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1. Introduction27

A function on an algebra is congruence preserving if, for any congruence, it28

maps pairs of congruent elements onto pairs of congruent elements.29

A polynomial function on an algebra is any function defined by a term30

of the algebra using variables, constants and the operations of the algebra.31

Obviously, every polynomial function is congruence preserving. An algebra32



2 Affine completeness of some free binary algebras

is said to be affine complete if every congruence preserving function is a33

polynomial function.34

We proved in [3] that if Σ has at least three elements, then the free35

monoid Σ∗ generated by Σ is affine complete. If Σ has just one letter a, then36

the free monoid a∗ is isomorphic to 〈N,+〉, and we proved in [2] that, e.g.,37

f : N → N defined by f(x) = if x == 0 then 1 else bex!c, where e =38

2.718 . . . is the Euler number, is congruence preserving but not polynomial.39

Thus 〈N,+〉, or equivalently the free monoid a∗ with concatenation, is not40

affine complete. Intuitively, this stems from the fact that the more generators41

Σ∗ has, the more congruences it has too: thus N with just one generator, has42

very few congruences, hence many functions, including non polynomial ones,43

can preserve all congruences of N. We also proved in [1] that, when Σ has three44

letters, in the algebra of full binary trees with leaves labelled by letters in45

Σ, every unary CP function is polynomial. These previous works left several46

open questions. What happens if Σ has one or two letters: for algebras of47

trees? for non unary CP functions on trees? for the free monoid generated48

by two letters? We answer these three questions in the present paper: these49

algebras are affine complete.50

For full binary trees and at least three letters in Σ, the proof of [1]51

consisted in showing that CP functions which coincide on Σ are equal, and in52

building for any CP function f a polynomial Pf such that f(a) = Pf (a) for53

a ∈ Σ, wherefrom we inferred that f = Pf for any t. We now generalize this54

result in three ways: we consider arbitrary trees (with labelled leaves) where55

the empty tree is allowed, the alphabet Σ may have one or two letters instead56

of at least three, and CP functions of any arity are allowed. Our method57

mostly uses congruences ∼u,v which substitute for occurrences of a tree u a58

smaller tree v: in fact, we even restrict ourselves to congruences such that u59

belongs to a subset T which is chosen in a way ensuring that every congruence60

class has a unique smallest canonical representative. Using these congruences,61

we build, for each CP function f , and τ ∈ T , a polynomial Pτ such that, for62

trees u1, . . . , un small enough, f(u1, . . . , un) = Pτ (u1, . . . , un). We finally63

show that polynomials which coincide on Σ coincide on the whole algebra,64

wherefrom we conclude that all the Pτ are equal and f is a polynomial.65

The next question is: is {a, b}∗ equipped with concatenation affine com-66

plete? We show in the present paper that the answer is positive. The essential67

tool used in [3] was the notion of Restricted Congruence Preserving functions68

(RCP), i.e., functions preserving only the congruences defined by kernels of69

endomorphisms 〈Σ∗, ·〉 → 〈Σ∗, ·〉, which allowed to prove that RCP functions70

are polynomial, implying that a fortiori CP functions are polynomial. Unfor-71

tunately, the fundamental property P below, which was implicitly used when72

there are three letters, no longer holds where there are only two letters.73

(P)
Let γa,b be the homomorphism substituting b for a, if f : Σ → Σ
is such that for all a, b ∈ Σ, γa,b(f(a)) = γa,b(f(b)) then
f is either a constant function, or the identity.

74
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Let Σ = {σ1, . . . , σn}. When n = 2, alas, property (P) is no longer true75

and restricting ourselves to RCP functions cannot help in proving that CP76

functions are polynomial. For instance, the function f : Σ∗ → Σ∗ defined by77

f(w) = σ
|w|σ1
1 · · ·σ|w|σnn , where |w|σ denotes the number of occurrences of78

the letter σ in w, is clearly neither polynomial, nor CP (the congruence “to79

have the same first letter” is not preserved). Fortunately f is not RCP when80

n ≥ 3, and thus is not a counter-example to the result stated in [3], but it is81

RCP when n = 2. Thus, for words in Σ∗, we here have to use a new method,82

which also works even when |Σ| = 2 and which is very similar to the method83

used for trees, even though the proofs are more complex to take into account84

the associativity of the product (usually called concatenation) of words.85

Most of the proofs of intermediate Lemmas and Propositions are iden-86

tical for trees and for words or have only minor differences. Important differ-87

ences, related to the associativity or non associativity of the product in the88

corresponding algebras, are located in the the proofs of just two Assumptions,89

that we prove separately.90

The paper is thus organized as follows. In section 2, we recall the basics91

about algebras, polynomials and congruence preserving functions. In Section92

3 we prove that the relation between the length of the value of a function and93

the length of its arguments is affine for both CP functions and polynomials.94

In Section 4 we define the main kind of congruences we will use and we show95

how to compute canonical representatives for these congruences. In section96

5, we define polynomials associated with a CP function and prove that CP97

functions are polynomial under two Assumptions given in the previous sec-98

tion. In Section 6 (resp. 7) we prove these two Assumptions for the algebra of99

trees (resp. the free monoid). Section 7 ends with an application of the result100

on lengths of Section 3 which immediately implies the affine completeness of101

the free commutative monoid.102

2. Binary algebras103

Let Σ be a nonempty finite alphabet, whose letters will be denoted by104

a, b, c, d, . . ..105

We consider an algebraic structure 〈A(Σ), ?,0〉, with 0 /∈ Σ, subsuming106

both the free monoid and the set of binary trees, satisfying the following107

axioms (Ax-1), (Ax-2), (Ax-3)108

(Ax-1) Σ ∪ {0} ⊆ A(Σ),109

(Ax-2) if u /∈ Σ ∪ {0} then ∃v, w ∈ A(Σ) : u = v ? w.110

(Ax-3) there exists a mapping | · | : A(Σ)→ N such that111

– |0| = 0,112

– |σ| = 1, for all σ ∈ Σ,113

– |u ? v| = |u|+ |v|.114

|u| is said to be the length of u (it is equal to the number of occurrences of115

letters of Σ in u). We similarly define, for σ ∈ Σ and u ∈ A(Σ), |u|σ which is116

the number occurrences of the letter σ in u.117
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The free monoid and the algebra of binary trees are examples of such an118

algebra. IfA(Σ) is the set of words Σ∗ on the alphabet Σ, ? is the (associative)119

concatenation of words, and 0 is the empty word ε, we get the free monoid. If120

A(Σ) is the set of binary trees whose leaves are labelled by letters of Σ, t ? t′121

is a tree consisting of a root whose left subtree is t and whose right subtree122

is t′, and 0 is the empty tree then we get the algebra of binary trees. In the123

case of trees the operation ? is not associative. The free commutative monoid124

〈Np,+, (0, . . . , 0)〉 is also a binary algebra satisfying (Ax-1), (Ax-2), (Ax-3).125

For our proofs the main difference between trees and the other examples126

relates to point (Ax-2) above: the decomposition u = v ?w is unique for trees127

and not for the other examples.128

Fact 2.1 (Unicity of decomposition). If t is a tree not in {0} ∪ Σ then there129

exists a unique ordered pair 〈t1, t2〉 6= 〈0,0〉 in A2 such that t = t1 ? t2.130

An element of A (a word or a tree) will be called an object.131

2.1. Polynomials132

We denote by A the set A(Σ). We also consider the infinite set of vari-133

ables X = {xi | i ≥ 1}, disjoint from Σ. We denote by An, the set A(Σ ∪134

{x1, . . . , xn}). Note that A = A0 and that An ⊆ An+1.135

Definition 2.2. A n-ary polynomial with variables {x1, . . . , xn} is an element136

P of An. The multidegree of P is the n-tuple 〈k1, . . . , kn〉 where ki = |P |xi .137

With every such polynomial P we associate a n-ary polynomial function138

P̃ : An → A defined by:139

for any ~u = 〈u1, . . . , ui, . . . , un〉 ∈ An,140

P̃ (~u) =


P if P = 0 or P ∈ Σ
ui if P = xi
P̃1(~u) ? P̃2(~u) if P = P1 ? P2

141

Note. In the case of words we have to prove that the value of P̃ is independent142

of its decomposition P = P1 ? P2. This is due to the fact that P̃ (~u) can be143

seen as a homomorphic image of P by an homomorphism from An to A.144

From now on we simply write P instead of P̃ for denoting the function145

associated with the polynomial P .146

2.2. Sub-objects147

Let A1,1 be the set of degree 1 unary polynomials with variable y, i.e., el-148

ements P ∈ A(Σ ∪ {y}) such that |P |y = 1, or objects of A(Σ ∪ {y}) with149

exactly one occurrence of y.150

Definition 2.3. An element u of A is a sub-object of an element t ∈ A, if151

there exists an occurrence of u inside t, formally: if there exists a polynomial152

P ∈ A1,1 such that P (u) = t.153

In the case of words (resp. trees), sub-objects are factors (resp. subtrees).154

Definition 2.4. A sub-polynomial Q of a polynomial P ∈ An is a sub-object155

of P .156
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2.3. Congruence preserving functions157

Definition 2.5. A congruence on 〈A, ?,0〉 is an equivalence relation ∼ com-158

patible with ?, i.e., s1 ∼ s′1 and s2 ∼ s′2 imply s1 ? s2 ∼ s′1 ? s′2.159

Definition 2.6. A function f : An → A is congruence preserving (abbre-160

viated into CP) on 〈A, ?,0〉 if, for all congruences ∼ on 〈A, ?,0〉, for all161

t1, . . . , tn, t
′
1, . . . , t

′
n in A, ti ∼ t′i for all i = 1, . . . , n, implies f(t1, . . . , tn) ∼162

f(t′1, . . . , t
′
n).163

Obviously, every polynomial function is CP. Our goal is to prove the164

converse, namely165

Theorem 2.7. Assume |Σ| ≥ 2 for words and |Σ| ≥ 1 for trees. If f : A(Σ)n →166

A(Σ) is CP then there exists a polynomial Pf such that f = P̃f .167

This is the main result of the paper, which will be proven in Sections 5, 6168

and 7.169

3. Length condition170

For polynomials, as a consequence of (Ax-3), we get:171

Fact 3.1. If P ∈ An is a polynomial of multidegree 〈k1, . . . , kn〉 then172

|P (u1, . . . , un)| = |P (0, . . . ,0)|+
∑n
i=1 ki.|ui|.173

A necessary condition for a function f : An → A to be polynomial is174

that f has in someway a multidegree 〈k1, . . . , kn〉, playing the rôle of the175

multidegree of polynomials, i.e., such that |f(u1, . . . , un)| = |f(0, . . . ,0)| +176 ∑n
i=1 ki.|ui|. For words when |Σ| ≥ 3, the existence of such a multidegree is177

proved in [3]. We here generalise this proof so that it also applies to trees and178

to smaller alphabets.179

Lemma 3.2. Let f : A(Σ)n → A(Σ) be a n-ary CP function.180

(1) There exist functions λ, λi : Nn → N such that |f(u1, . . . , un)| =181

λ(|u1|, . . . , |un|) and |f(u1, . . . , un)|i = λi(|u1|i, . . . , |un|i), for i = 1, 2.182

(2) λ(p1 + q1, . . . , pn + qn) = λ1(p1, . . . , pn) + λ2(q1, . . . , qn).183

Proof. For an object u ∈ A, denote by |u|1 = |u|a the number of occurrences184

of the letter a in u, and let |u|2 = |u| − |u|1. Formally, |ε|1 = 0, |a|1 = 1,185

|σ|1 = 0 for σ 6= a, and |t ? t′|1 = |t|1 + |t′|1.186

(1) As the relation |u| = |v| is a congruence and f is CP, |ui| = |vi|187

for i = 1, . . . , n implies |f(u1, . . . , un)| = |f(v1, . . . , vn)| hence |f(u1, . . . , un)|188

depends only on the lengths |u1|, . . . , |un|, and λ is well defined. Similarly for189

λi, i = 1, 2 as |u|i = |v|i is also a congruence.190

(2) Consider objects ui with |ui|1 = pi and |ui|2 = qi (see Figure 1). On191

the one hand, |f(u1, . . . , un)| = λ(|u1|, . . . , |un|) = λ(p1 + q1, . . . , pn + qn),192

|f(u1, . . . , un)|1 = λ1(p1, . . . , pn) and |f(u1, . . . , un)|2 = λ2(q1, . . . , qn). On193

the other hand, |f(u1, . . . , un)| = |f(u1, . . . , un)|1 + |f(u1, . . . , un)|2, hence194

(2). �195
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Figure 1. A tree ui with pi = |ui|1 = 3 and qi = |ui|2 = 4.

Proposition 3.3. For any n-ary CP function f : A(Σ)n → A(Σ), with |Σ| ≥ 2,196

there exists a n-tuple 〈k1, . . . , kn〉 of natural numbers, called the multidegree197

of f , such that |f(u1, . . . , un)| = |f(0, . . . ,0)|+
∑n
i=1 ki.|ui|.198

Proof. Let ~ei = 〈
(i− 1) times︷ ︸︸ ︷

0, . . . , 0 , 1, 0, . . . , 0〉, ~0 = 〈0, . . . , 0〉, and apply Lemma 3.2.
We have for any m1, . . . ,mi, . . . ,mn,

λ(m1, . . . ,mi + 1, . . . ,mn) = λ1(m1, . . . ,mi, . . . ,mn) + λ2(~ei),

λ(m1, . . . ,mi, . . . ,mn) = λ1(m1, . . . ,mi, . . . ,mn) + λ2(~0).

Subtracting

λ(m1, . . . ,mi + 1, . . . ,mn)− λ(m1, . . . ,mi, . . . ,mn) = λ2(~ei)− λ2(~0).

Setting ki = λ2(~ei)− λ2(~0), we get

λ(m1, . . . ,mi, . . . ,mn)− λ(m1, . . . ,mi − 1, . . . ,mn) = ki

...

λ(m1, . . . , 1, . . . ,mn)− λ(m1, . . . , 0, . . . ,mn) = ki

Summing up λ(m1, . . . ,mi, . . . ,mn)− λ(m1, . . . , 0, . . . ,mn) = kimi

Iterating for all i, λ(m1, . . . ,mn)− λ(~0) = k1m1 + · · ·+knmn. �

Proposition 3.3 holds both for words and trees. However, for trees the199

following better result holds even when |Σ| = 1.200

Proposition 3.4. In the algebra of trees, for any n-ary CP function f : A(Σ)n →201

A(Σ), there exists a n-tuple 〈k1, . . . , kn〉 of natural numbers, called the multi-202

degree of f , such that |f(u1, . . . , un)| = |f(0, . . . ,0)|+
∑n
i=1 ki.|ui|.203

Proof. For a tree u /∈ Σ, |u|1 (resp. |u|2) is the number of left (resp. right)204

leaves, so that |u| = |u|1 + |u|2 for u /∈ Σ. On Figure 1 |ui|1 = 4 and |ui|2 = 3.205

Formally, |0| = |0|1 = |0|2 = 0. For u = t ? t′ /∈ Σ we have206

|u|1 = |t′|1 +

{
1 if t ∈ Σ,
|t|1 if t /∈ Σ.

and |u|2 = |t|2 +

{
1 if t′ ∈ Σ,
|t′|2 if t′ /∈ Σ.

207
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We already know that the relation ∼ defined by u ∼ v iff |u| = |v| is a208

congruence. For j = 1, 2, the relation∼j defined by u ∼j v iff either u = v ∈ Σ209

or u, v /∈ Σ and |u|j = |v|j is a congruence. Hence if f = An → A is CP then210

for all u1, . . . , un, v1, . . . , vn /∈ Σ such that ∀i = 1, . . . , n, |ui|j = |vi|j and211

f(u1, . . . , un), f(v1, . . . , vn) /∈ Σ, we have |f(u1, . . . , un)|j = |f(v1, . . . , vn)|j .212

Without loss of generality, we may assume that for all u1, . . . , un, f(u1, . . . , un)213

is not in Σ. This holds because g(u1, . . . , un) = 0 ? f(u1, . . . , un) is CP and214

|g(u1, . . . , un)| = |f(u1, . . . , un)|.215

For u /∈ Σ, |u| = |u|1 + |u|2. Exactly as in Proposition 3.3 we show that216

for any m1, . . . ,mi, . . . ,mn, λ(m1, . . . ,mn)−λ(~0) = k1m1+· · ·+knmn. It fol-217

lows that for all u1, . . . , un /∈ Σ, |f(u1, . . . , un)| = |f(0, . . . ,0)|+
∑n
i=1 ki.|ui|.218

Finally, as for all u ∈ A, u ? 0 /∈ Σ and |u ? 0| = |u|, we have:219

|f(u1, . . . , un)| = |f(u1 ? 0, . . . , un ? 0)| = |f(0, . . . ,0)| +
∑n
i=1 ki.|ui ? 0| =220

|f(0, . . . ,0)|+
∑n
i=1 ki.|ui|. �221

4. The toolbox222

4.1. Congruent substitutions223

If f is CP then f(u) ∼ f(v) as soon as u ∼ v. This is why we introduce224

specific congruences ∼u,v such that u ∼u,v v, so that if for some polynomial225

Q, (which is also CP), we know that for some u, f(u) = Q(u), then we know226

that for all v, f(v) ∼u,v Q(v). Thus it is important to describe the congruence227

classes of such congruences.228

Definition 4.1. For u, v a couple of objects in A the relation ∼u,v is the229

equivalence relation generated by the set of pairs {〈P (u), P (v)〉 | P ∈ A1,1}.230

∼u,v is clearly a congruence on 〈A, ?,0〉.231

Given such a congruence, we can consider the quotient algebra. It may232

happen that each congruence class has a simple canonical representative.233

For instance, the canonical representative could be the shortest object in234

the congruence class, provided it is unique. However unicity of the shortest235

representative certainly does not hold for the congruences∼u,v when |u| = |v|.236

It also happens that unicity does not hold even when |u| > |v| (Remark 4.2).237

Remark 4.2. Even if |u| > |v|, there might be several shortest congruent238

elements. For instance in the case of words, ab ∼aa,b aaa ∼aa,b ba, hence ab239

and ba are two shortest elements congruent to aaa.240

Definition 4.3. For a given element τ of A, an element t ∈ A is τ -reducible,241

if τ is a sub-object of t. We denote by Θτ the set of all τ -irreducible objects242

in A.243

In Figure 2, Qτ is τ -reducible, Q and Pτ are τ -irreducible, and in Figure244

3, t′′ is τ -irreducible.245

We now extend Definition 4.3 of τ -irreducible objects in A to polyno-246

mials in An.247
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Figure 2. From left to right: tree τ = c ? d, a τ -irreducible
polynomial Q with variable x, a τ -reducible polynomial Qτ
with variable x1 together with its associated τ -irreducible
polynomial Pτ = Red∗τ,x2

(Qτ ).

Definition 4.4. Let τ ∈ A. A polynomial P ∈ An is said to be τ -irreducible248

if any sub-object v of P which is in A is τ -irreducible.249

Intuitively, the constant sub-objects (“coefficients”) of P are τ -irreducible.250

In Figure 2, Qτ is the only τ -reducible polynomial.251

4.2. Canonical representatives252

In fact it is possible to define and to “compute” a canonical representative253

t′ of t for ∼τ,v if |τ | > |v|. To this end we stepwise replace every occurrence254

of τ inside t by v. To make this process deterministic we define the reduct255

Redτ,v(t) obtained by replacing by v the “leftmost” occurrence of τ inside a256

τ -reducible object t.257

Definition 4.5. (Definition of Redτ,v(t).)258

Case of trees If t = τ then Redτ,v(t) = v. Oherwise, since t 6= τ is τ -reducible,259

|t| > |τ | ≥ 1, hence, by (Ax-2), t = t1 ? t2, and at least one ti is τ -reducible.260

Either t1 ∈ A is τ -reducible, and then Redτ,v(t) = Redτ,v(t1) ? t2, or t1 is261

τ -irreducible, then t2 is τ -reducible and Redτ,v(t) = t1 ? Redτ,v(t2). Figure 3262

illustrates this reduction process.263

Case of words Since τ is a factor of t, there exists a shortest prefix t′ of t264

such that t = t′τt′′. Then Redτ,v(t) = t′vt′′.265

τ = q
�
�

c
A
A

d

t = q
�
�q

�
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d
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a

Figure 3. From left to right, τ = c?d, t = ((c?d)?0)?(c?d),
t′ = (a?0)?(c?d)) = Redτ,a(t), t′′ = Redτ,a(t′) = (a?0)?a).

We iterate this partial reduction function to get a mapping Red∗τ,v : A →
Θτ inductively defined by:

Red∗τ,v(t) =

{
t if t ∈ Θτ

Red∗τ,v(Redτ,v(t)) if t /∈ Θτ .
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Proposition 4.6. Red∗τ,v(u ? w) = Red∗τ,v(Red
∗
τ,v(u) ? w).266

Proof. By definition, Red∗τ,v(t) = Redkτ,v(t), where k is the least integer267

such that Redkτ,v(t) is τ -irreducible. If Red∗τ,v(u ? w) = Redpτ,v(u ? w) and268

Red∗τ,v(u) = Redqu,v(u), necessarily q ≤ p and we have by induction on269

i = 0, . . . , q, Redpτ,v(u ? w) = Redp−iτ,v (Rediτ,v(u) ? w) hence the result for270

i = q. �271

Although Red∗τ,v(t) is a canonical representative of the congruence class272

of t modulo ∼τ,v, it is not necessarily the only object of the equivalence class273

of t having minimal length, as shown in Remark 4.2.274

To prevent such situations, we will first define for each algebra a suitably275

chosen subset T of the algebra ensuring that for each τ ∈ T , there exists a276

unique canonical representative of shortest length in the class of ∼τ,v for277

each v ∈ A such that |v| < |τ | (Proposition 4.8). This set T has to satisfy278

the following assumption.279

Assumption 4.7. ∀τ ∈ T , v ∈ A, P ∈ A1,1, Red∗τ,v(P (τ)) = Red∗τ,v(P (v)).280

Proposition 6.3 (resp. 7.1) shows that this assumption holds for the set281

T of trees defined by (6.1) in Section 6 (resp. the set T of words defined by282

(7.1) in Section 7).283

Provided the truth of this assumption, we get:284

Proposition 4.8. (Existence of a canonical representative) Let τ ∈ T , and285

v ∈ A with |τ | > |v|. For any t, t′ ∈ A, t ∼τ,v t′ iff Red∗τ,v(t) = Red∗τ,v(t
′).286

Proof. By the definition of Red∗τ,v, for all t, t′, t ∼τ,v Red∗τ,v(t), and t′ ∼τ,v287

Red∗τ,v(t
′). Hence Red∗τ,v(t) = Red∗τ,v(t

′) implies t ∼τ,v t′ by transitivity.288

Conversely, if t ∼τ,v t′ then there exist t1 = t, t2, . . . , tn = t′, and Pi ∈289

A1,1 (see Definition 4.1) such that for each i = 1, . . . , n − 1, ti = Pi(τ) and290

ti+1 = Pi(v) (or vice-versa). By Assumption 4.7, Red∗τ,v(ti) = Red∗τ,v(ti+1),291

hence Red∗τ,v(t) = Red∗τ,v(t
′). �292

Proposition 4.9. Let τ ∈ T , t and t′ be two objects such that |v| < |τ |,293

t ∼τ,v t′, and |t| < |τ |. Then t = t′ if and only if |t| = |t′|.294

Proof. If t = t′ then obviously |t| = |t′|. Since t ∼τ,v t′, by Proposition 4.8,295

Red∗τ,v(t) = Red∗τ,v(t
′). But |t′| = |t| < |τ | implies that both t′ and t are296

τ -irreducible, hence t = Red∗τ,v(t) = Red∗τ,v(t
′) = t′. �297

4.3. Strong irreducibility298

By Propositions 4.8 and 4.9, we get that if |t| < |τ | and |Red∗τ,v(t′)| > |τ |299

then t 6∼τ,u t′. To prove that if |t′| > |τ | then |Red∗τ,v(t′)| > |τ |, it is enough300

to prove that if t′ contains a sub-object w of length n ≥ |τ | then w is a301

sub-object of Red∗τ,v(t
′). This leads to the following definition.302

Definition 4.10. Let τ ∈ A, an object w is said to be strongly τ -irreducible303

if |w| ≥ |τ | and if whenever w is a sub-object of some t ∈ A, w also is a304

sub-object of Red∗τ,v(t) for any v such that |v| < |τ |.305
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We finally state the following assumption on T , the truth of which is306

proven in Proposition 6.4 (resp. 7.3) for trees (resp. for words).307

Assumption 4.11. For all τ ∈ T and for all τ -irreducible unary polynomials308

P of degree k such that |τ | ≥ 2k + 4, we have the following property:309

If for all u ∈ A such that |u| ≤ 1, P (u) is τ -reducible, then there exists310

θ ∈ A of length 1 and a strongly τ -irreducible sub-object w of P (θ) of length311

not less than |τ | (i.e., |w| ≥ |τ |).312

5. Proof of the main Theorem313

From now on, we postulate the existence of a set T which satisfies Assump-314

tions 4.7 and 4.11.315

5.1. The induction hypothesis316

The polynomiality of CP functions will be proved by induction on their arity.317

The basic step of this induction is obvious and common to all algebras we318

consider: a function of arity 0 is a constant, which is a polynomial function.319

For the inductive step, note that if n ≥ 0 and f is a (n + 1)-ary320

CP function of multidegree 〈k1, . . . , kn, kn+1〉, then for all t, ft defined by321

ft(u1, . . . , un) = f(u1, . . . , un, t) is CP with multidegree 〈k1, . . . , kn〉, hence322

the induction hypothesis:323

Fact 5.1.
Induction hypothesis. For any t ∈ A, there exists a polynomial
Qt of multidegree 〈k1, . . . , kn〉 such that:

∀u1, . . . , un ∈ A, Qt(u1, . . . , un) = f(u1, . . . , un, t).
324

Definition 5.2. The polynomial Pτ associated with f and τ ∈ T is the unique
τ -irreducible polynomial of multidegree 〈k1, . . . , kn,m〉 such that

∀u1, . . . , un ∈ A, Pτ (u1, . . . , un, τ) = Qτ (u1, . . . , un) = f(u1, . . . , un, τ).

It is also defined by Pτ = Red∗τ,xn+1
(Qτ ), considering Pτ and Qτ as objects325

in A(Σ ∪ {x1, . . . , xn, xn+1}).326

Figure 2 illustrates this definition in the algebra of binary trees.327

5.2. Partial polynomiality of CP functions328

Assuming the hypothesis stated in Fact 5.1, we can proceed and prove329

Proposition 5.3. Let τ ∈ T . If |u| < |τ | and if |f(u1, . . . , un, u)| < |τ | then330

• f(u1, . . . , un, u) = Red∗τ,u(Pτ (u1, . . . , un, u))331

• either m = kn+1 and f(u1, . . . , un, u) = Pτ (u1, . . . , un, u), or m < kn+1332

and Pτ (u1, . . . , un, u) is τ -reducible.333

Proof. Obviously, f(u1, . . . , un, u) ∼τ,u f(u1, . . . , un, τ) = Pτ (u1, . . . , un, τ)334

∼τ,u Pτ (u1, . . . , un, u). As |f(u1, . . . , un, u)| < |τ |, f(u1, . . . , un, u) is τ -irredu-335

cible. Thus, by Assumption 4.7, f(u1, . . . , un, u) = Red∗τ,u(Pτ (u1, . . . , un, u)).336

Let d = |f(u1, . . . , un, τ)| = |Pτ (u1, . . . , un, τ)|. Then |f(u1, . . . , un, u)| =337

d− kn+1(|τ | − |u|) and |Pτ (u1, . . . , un, u)| = d−m(|τ | − |u|).338
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By Proposition 4.9, Pτ (u1, . . . , un, u) = f(u1, . . . , un, u) if and only if339

|Pτ (u1, . . . , un, u)| = |f(u1, . . . , un, u)| if and only if m = kn+1.340

Since f(u1, . . . , un, u) = Red∗τ,u(Pτ (u1, . . . , un, u)), if f(u1, . . . , un, u) 6=341

Pτ (u1, . . . , un, u) then Pτ (u1, . . . , un, u) is not τ -irreducible.342

Hence d − m(|τ | − |u|) = |Pτ (u1, . . . , un, u)| ≥ |τ | > |f(u1, . . . , un, u)| =343

d− kn+1(|τ | − |u|), which implies m < kn+1. �344

An immediate consequence of Proposition 5.3 is:345

Proposition 5.4. Let τ ∈ T , let 〈k1, . . . , kn,m〉 be the multidegree of Pτ . Then346

(1) either m = kn+1 and for all u ∈ A such that |u| ≤ |τ |, and for all347

u1, . . . , un ∈ A such that |f(u1, . . . , un, u)| < |τ |, we have348

Pτ (u1, . . . , un, u) = f(u1, . . . , un, u),349

(2) or m < kn+1 and for all u ∈ A such that |u| ≤ |τ |, and for all350

u1, . . . , un ∈ A such that |f(u1, . . . , un, u)| < |τ |, Pτ (u1, . . . , un, u) is351

τ -reducible.352

5.3. Polynomiality of CP functions353

We first prove that for almost all τ we are in case (1) of Proposition 5.4.354

Proposition 5.5. Let 〈k1, . . . , kn, kn+1〉 be the multidegree of f , let k = k1 +355

· · · + kn + kn+1, and let τ ∈ T be such that τ ≥ 2k + 4. For all u ∈ A such356

that |u| < |τ | and for all u1, . . . , un ∈ A such that |f(u1, . . . , un, u)| < |τ |, we357

have Pτ (u1, . . . , un, u) = f(u1, . . . , un, u).358

Proof. By Proposition 5.4 it is enough to prove that m < kn+1 is impossible.359

Let Pτ be the τ -irreducible polynomial associated with τ of multidegree360

〈k1, . . . , kn,m〉 and let us assume that m < kn+1. Then, by Proposition 5.4,361

we have: for all u ∈ A such that |u| ≤ |τ | and |f(u, . . . , u, u)| < |τ |, the object362

Pτ (u, . . . , u, u) is τ -reducible.363

We now consider the τ -irreducible unary polynomial P ′τ of degree M =364

k1 + · · ·+ kn +m < k, obtained by substituting x1 for any variable xi in Pτ .365

Since P ′τ (u) is τ -reducible for all u such that |u| ≤ 1 < |τ |, by Assumption 4.11366

there exist θ of length 1 and a strongly τ -irreducible sub-object w of P ′τ (θ) =367

Pτ (θ, . . . , θ, θ) of length not less than τ . By Proposition 5.3, w is a sub-object368

of Red∗τ,θ(Pτ (θ, . . . , θ, θ)) = f(θ, . . . , θ, θ). Hence |w| ≤ |f(θ, . . . , θ, θ)| < |τ | ≤369

|w|, a contradiction. �370

Let τ1 and τ2 be such that |τi| > |f(a, . . . , a)|. Then, by Proposition 5.5,371

we have :372

For all u1, u2, . . . , un, u such that |u| and |f(u1, . . . , un)| are less that |τ1| and373

|τ2| then374

Pτ1(u1, . . . , un, u) = f(u1, . . . , un, u) = Pτ2(u1, . . . , un, u). (5.1)

We first prove that Pτ1 = Pτ2 as a consequence of the next Proposition by375

observing that equation (5.1) holds for all ui, u of length 1.376

Proposition 5.6. Let P , Q be polynomials of multidegree 〈k1, . . . , kn〉.377

If, for all u1, u2, . . . , un of length 1, P (u1, . . . , un) = Q(u1, . . . , un) then378

P = Q.379
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Proof. For a polynomial P in the algebra of trees, we define s(P ) to be the380

number of symbols of Σ∪{?}∪{x1, . . . , xn} occurring in P . Formally s(0) = 0,381

s(a) = 1 for a ∈ Σ ∪ {x1, . . . , xn}, and s(u ? v) = 1 + s(u) + s(v). For P in382

the algebra of words, we set s(P ) = |P |.383

In both cases there exists at least two distinct objects of length 1: either384

two distinct letters a, b, or the trees a ? 0 and 0 ? a.385

The proof is by induction on s(P ).386

Basis.387

(1) If s(P ) = s(Q) = 0 then P = 0 = Q.388

(2) If s(P ) = s(Q) = 1 then P, Q ∈ Σ ∪ {x1, . . . , xn}. If P and Q are389

both constants, the result follows from equality P (u, . . . , u) = Q(u, . . . , u). If390

P = xi and Q = xj with i 6= j, the hypothesis P (u1, . . . , un) = Q(u1, . . . , un)391

leads to a contradiction, as soon as ui 6= uj , hence i = j. If P is a constant392

u and Q is a variable xi, we have u = P (u′, . . . , u′) = Q(u′, . . . , u′) = u′, a393

contradiction when u 6= u′.394

Inductive step. If s(P ) > 1 then P = P1 ? P2 and Q = Q1 ? Q2, (tak-395

ing |P1| = |Q1| = 1 in case of words). For any u1, u2, . . . , un of length 1,396

we have Q(u1, . . . , un) = P (u1, . . . , un) = P1(u1, . . . , un) ? P2(u1, . . . , un) =397

Q1(u1, . . . , un)?Q2(u1, . . . , un) which implies Pi(u1, . . . , un) = Qi(u1, . . . , un),398

hence, by the induction hypothesis, P1 = Q1 and P2 = Q2, and thus P =399

Q. �400

Theorem 5.7. Let f be a CP function of multidegree 〈k1, . . . , kn, kn+1〉. There401

exists a polynomial Pf of multidegree 〈k1, . . . , kn, kn+1〉 such for all u1, . . . , un,402

u ∈ A, Pf (u1, . . . , un, u) = f(u1, . . . , un, u).403

Proof. By Propositions 5.5 and 5.6 there exists a unique polynomial Pf404

such that for all τ of length greater than |f(a, a, . . . , a)|, Pτ = Pf . For any405

u1, . . . , un, u there exists τ such that |τ | > max(|u|, |f(u1, . . . , un, u)|). By406

Proposition 5.5, f(u1, . . . , un, u) = Pτ (u1, . . . , un, u) = Pf (u1, . . . , un, u). �407

6. The case of trees408

We here consider the algebra of binary trees with labelled leaves. For this409

algebra of trees we set410

T = { τ ∈ A | |τ | ≥ 2 } (6.1)

Proposition 6.1. If a tree w is τ -irreducible, then it is strongly τ -irreducible.411

Proof. By definition of Red∗τ,v, it is enough to show that if w is a subtreee412

of t then it is a subtree of Redτ,v(t). The proof is by induction on |t| such413

that w is a subtree of t. If t is τ -irreducible then Redτ,v(t) = t and the result414

is proved. Otherwise, t = t1 ? t2, with w subtree of some ti, and Redτ,v(t) =415

Redτ,v(t1) ? t2 or Redτ,v(t) = t1 ? Redτ,v(t2). In both cases, w is a subtree of416

Redτ,v(t). �417
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6.1. Canonical representative418

For trees, we can improve Proposition 4.6.419

Proposition 6.2. Red∗τ,v(u ? w) = Red∗τ,v(Red
∗
τ,v(u) ? Red∗τ,v(w)).420

Proof. By taking Proposition 4.6 into account, we just have to prove that421

Red∗τ,v(u ?w) = Red∗τ,v(u ?Red
∗
τ,v(w)) when u is τ -irreducible. This a conse-422

quence of the definition of the leftmost reduction for trees: Redτ,v(u ? w) =423

u ? Redτ,v(w). �424

We now prove that Assumption 4.7 holds for our algebra of binary trees.425

Proposition 6.3. ∀P ∈ A1,1 Red∗τ,v(P (τ)) = Red∗τ,v(P (v)).426

Proof. The proof is by induction on |P |. If P = y thenRed∗τ,v(τ) = Red∗τ,v(v) =427

v.428

If P = P1 ? P2 then by Proposition 6.2,

Red∗τ,v(P (τ)) = Red∗τ,v(Red
∗
τ,v(P1(τ)) ? Red∗τ,v(P2(τ))), and

Red∗τ,v(P (v)) = Red∗τ,v(Red
∗
τ,v(P1(v)) ? Red∗τ,v(P2(v))).

Then, by the induction hypothesis, Red∗τ,v(Pi(v)) = Red∗τ,v(Pi(τ)), for i =429

1, 2, and thus Red∗τ,v(P (v)) = Red∗τ,v(P (τ)). �430

6.2. Strongly irreducible trees431

The following Proposition assures that Assumption 4.7 holds for trees.432

Proposition 6.4. For all τ ∈ T and for all τ -irreducible unary polynomials P433

the following property holds.434

If for all u ∈ A such that |u| ≤ 1, P (u) is τ -reducible, then there exists435

θ ∈ A of length 1 and a strongly τ -irreducible subtree w of P (θ) of length not436

less than |τ | (i.e., |w| ≥ |τ |).437

Proof. Let τ ∈ T , which has length at least 2. Let P be a non constant τ -438

irreducible polynomial such that for all u ∈ A with length |u| ≤ 1, P (u) is439

τ -reducible. Let σ ∈ Σ, and let t = σ ? 0 and t′ = 0 ? σ, t 6= t′.440

As P (t) is τ -reducible, it must contain τ . But since P is τ -irreducible,441

there exists a non constant sub-polynomial Q of P such that Q(t) = τ . Then442

|Q(t)| = |Q(t′)| = |τ | and, as Q is non-constant, Q(t′) 6= τ . It follows that443

Q(t′) is τ -irreducible, hence strongly τ -irreducible by Proposition 6.1. We set444

θ = t′ and w = Q(t′). �445

7. The case of words446

For words, proving Assumptions 4.7 and 4.11 requires more work because447

unicity of the decomposition fails in the free monoid.448

As shown in Remark 4.2, Assumption 4.7 does not hold for any word τ .449

Indeed, Assumption 4.7 fails as soon as τ self-overlaps, i.e., when there exists450

a word t which is a both a strict prefix and a strict suffix of τ . For instance,451

if τ = aba, ab ∼aba,ε ababa ∼aba,ε ba, while Redaba,ε(ab) = ab 6= ba =452
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Redaba,ε(ba). Obviously, words such that anbn do not self-overlap and thus453

satisfy Assumption 4.7. But we also need that these words satisfy Assumption454

4.11. The condition that τ is not self-overlapping is not sufficient to satisfy455

Assumption 4.11. For instance, let τ = aabb and P = aax1bb, which is τ -456

irreducible. The factors of length ≥ 4 of P (a) = aaabb and P (b) = aabbb457

are aaabb, aabbb, aabb, aaab, abbb. None of them is strongly τ -irreducible:458

aaabb, aabbb, aabb are τ -reducible, and aaab, abbb satisfy one of the forbidden459

property (1) or (2) of Proposition 7.2. We thus have to introduce a stronger460

constraint to define a suitable T , which turns out to be461

T = {anbabn | n > 1} (7.1)

7.1. Canonical representative462

Proposition 7.1. For all P in A1,1 Red∗τ,v(P (τ)) = Red∗τ,v(P (v)).463

Proof. The proof is by induction on |P |.464

Basis. If P = y then Red∗τ,v(τ) = Red∗τ,v(v) = v.465

Induction. Let P = uyw and let s = Red∗τ,v(u) ∈ Θτ . By Proposition466

4.6, Red∗τ,v(P (τ)) = Red∗τ,v(sτw) and Red∗τ,v(P (v)) = Red∗τ,v(svw). Thus, to467

prove the result it is enough to show that Redτ,v(sτw) = svw, i.e., that the468

shortest prefix sτ of sτw is sτ . Let us assume that there exists s′ such that469

s′τ is a strict prefix of sτ . Since since s ∈ Θτ , s′τ is not a prefix of s.470

s τ

s′ τ

t

471

It follows that there exists a nonempty word t, with 0 < |t| < |τ |, which is472

both a suffix and a prefix of τ = anbabn, such that s′τ = st.473

The first letter of t has to be a and its last letter b. Therefore anb is a474

prefix of t and abn is a suffix of t, hence t = anbabn, contradicting |t| < |τ |. �475

7.2. Strongly irreducible words476

We state a sufficient condition for a word w ∈ A to be strongly τ -irreducible.477

Proposition 7.2. A nonempty word w is strongly τ -irreducible if it is τ -478

irreducible and it has the additional properties that τ and w do not overlap,479

i.e., there do not exist words u, t′, t such that t /∈ {ε, τ} and480

(1) either w = ut and τ = tt′,481

(2) or τ = t′t and w = tu.482

Proof. It is enough to show that if a factor w of t satisfies the above hypoth-483

esis, then w is a factor of Redτ,v(t) when |v| < |τ |.484

Let t = w′τw′′ with w′ τ -irreducible. Then Redτ,v(t) = w′vw′′. As w is485

τ -irreducible and w and τ do not overlap, if w is a factor of t, it is a factor486

of w′ or a factor of w′′, hence a factor of Redτ,v(t) = w′vw′′. �487

The following proposition implies Assumption 4.11.488
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Proposition 7.3. For all τ = anbabn ∈ T and for all τ -irreducible unary489

polynomials P of degree k such that |τ | ≥ 2k + 4, the following property490

holds.491

If P (ε) is τ -reducible, then there exists θ ∈ {a, b} and a strongly τ -492

irreducible sub-object w of P (θ) of length greater than |τ | (i.e., |w| > |τ |).493

Proof. Let τ = anbabn ∈ T and let P be a τ - irreducible polynomial of degree494

k such that P (ε), P (a), and P (b) are τ -reducible. Note that since |τ | = 2n+2495

the condition |τ | ≥ 2k + 4 is equivalent to n− 1 > k.496

Since τ is a factor of P (ε) there exists a factorQ of P such thatQ(ε) = τ ,
i.e.,

Q = axp1axp2a · · · axpnbxmaxq1bxq2b · · ·xqnb
with k = p+m+q < n−1, where p = p1+p2+· · ·+pn and q = q1+q2+· · ·+qn.497

We show that at least one of the words Q(a) or Q(b) is strongly τ -498

irreducible.499

We first show that if Q(a) = an+pba1+m+q1baq2b · · · aqnb is not strongly500

τ -irreducible, then m = q = 0.501

If Q(a) is not strongly τ -irreducible, then it is either τ -reducible and we502

are in case (i) below, or it is τ -irreducible and then we are in one of cases (ii)503

or (iii) below.504

(i) Q(a) is τ -reducible, i.e., ∃u, v such that: Q(a) = uτv, or505

(ii) Q(a) = ut and τ = tv, with v 6= ε 6= t (Proposition 7.2 (1)), or506

(iii) Q(a) = tv and τ = ut, with u 6= ε 6= t (Proposition 7.2 (2)).507

For both Cases (ii) and (iii), as both Q(a) and τ start with a and end with508

b, the first letter of t is a and its last letter is b.509

Case(i) If τ is a factor of Q(a) then babn is a factor of Q(a). The only510

factor of Q(a) starting and ending with b, ending with b, and containing511

(n+ 1) b’s is ba1+m
′+m1bam2b · · · amnb, which implies m′ +mb = 0.512

Case(ii) Assume now ∃u, v, t with Q(a) = ut and τ = tv, with v 6= ε. As513

t is a prefix of τ , we have t = anb or t = anbabn
′

with 0 < n′ < n. Since t is a514

suffix of Q(a), in all cases, anb is a factor of Q(a). As for all i qi ≤ q < n− 1515

and, since 1 +m+ q1 ≤ 1 + p+m+ q < 1 + (n− 1) = n, the unique suffix of516

Q(a) starting with anb is t = anba1+m+q1baq2b · · · aqnb. Since t is a prefix of517

τ , we have n+ 1 +m+ q = |t|a ≤ |τ |a = n+ 1, which implies m = q = 0.518

Case(iii) Assume now ∃u, v, t with Q(a) = tv and τ = ut, with u 6= ε.519

Since t is a suffix of τ , then either t = abn or t = an
′
babn with 0 < n′ < n.520

Since t is a prefix of Q(a), an+pb is also a prefix of t. Both cases are impossible521

since n+ p > n′ ≥ 1.522

Hence if Q(a) is not strongly τ -irreducible, m = q = 0.523

By a symmetrical reasoning on Q(b) = abp1abp2 · · · abpn+m+qabqn+n we524

get that if Q(b) is not strongly τ -irreducible, then p = m = 0.525

Finally, if both Q(a) and Q(b) are not strongly τ -irreducible then p =526

m = q = 0, hence τ is a factor of P , contradicting the τ -irreducibility of P .527

Thus, either Q(a) or Q(b) is strongly τ -irreducible. Then choose θ ∈ {a, b}528

such that w = Q(θ) is strongly τ -irreducible. �529
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Hence, Theorem 2.7 holds and if |Σ| ≥ 2 then Σ∗ is affine complete.530

Our proof method can be extended to the free commutative monoid with p531

generators when p ≥ 2 as shown in the next subsection.532

7.3. Application to free commutative monoids533

Note that the free commutative monoid with p generators is isomorphic to534

Np. We now prove a variant of Proposition 3.3 which immediately implies that535

the commutative binary algebra 〈Np,+,~0〉 is affine complete, thus giving a536

very simple proof of already known results [5, 7].537

For u = 〈`1, . . . , `p〉 ∈ Np let |u| = `1 + · · · + `p and |u|j = `j for538

i = 1, . . . , p.539

Proposition 7.4. For any n-ary CP function f : A(Np)n → Np), with p ≥ 2,540

there exists a n-tuple 〈k1, . . . , kn〉 of natural numbers, called the multidegree541

of f , such that542

(i) |f(u1, . . . , un)| = |f(0, . . . ,0)|+
∑n
i=1 ki.|ui|, and543

(ii) for all j = 1, . . . , p, |f(u1, . . . , un)|j = |f(0, . . . ,0)|j +
∑n
i=1 ki.|ui|j544

Proof. The proof is almost identical to the proof of Proposition 3.3. We
stress here the differences. For an object u = 〈`1, . . . , `p〉 ∈ Np, and an arbi-
trary element j ∈ 〈1, . . . , p〉, let us denote: |u| = `1 + · + `p, |u|1 = `j , and
|u|2 = |u| − |u|1. There exist λ, λ1 such that λ(m1, . . . ,mn) is the common
value of all |f(u1, . . . , un)| and λ1(m1, . . . ,mn) is the common value of all
|f(u1, . . . , un)|1 = `j for an arbitrary j ∈ {1, . . . , p}. Lemma 3.2 and (i) are
then proved as in Proposition 3.3. Moreover

λ(m1, . . . ,mn) = λ1(m1, . . . ,mn) + λ2(0, . . . , 0)

= λ1(m1, . . . ,mn)− λ1(0, . . . , 0) + λ1(0, . . . , 0) + λ2(0, . . . , 0)

= λ1(m1, . . . ,mn)− λ1(0, . . . , 0) + λ(0, . . . , 0) [Lemma 3.2 2]

Hence λ(m1, . . . ,mn)−λ(0, . . . , 0) = λ1(m1, . . . ,mn)−λ1(0, . . . , 0) which, as545

λ1 can be any arbitrarily chosen λj , immediately implies (ii). �546

Corollary 7.5. The commutative algebra 〈Np,+, 0〉 is affine complete.547

Proof. Proposition 7.4 (ii) means that the jth component |f(x1, . . . , xn)|j of548

f(x1, . . . , xn) is of the form cj +
∑n
i=1 ki.|xi|j , for all j = 1, . . . , p. Hence549

f(x1, . . . , xn) = c+
∑n
i=1 ki.xi is indeed a polynomial. �550

8. Conclusion551

It is known that, when the alphabet has just one letter, the free monoid is not552

affine complete [2]. It is also known that, when the alphabet has at least two553

letters, the free commutative monoid is affine complete since it is isomorphic554

to a free module or a vector space of dimension at least 2, known to be affine555

complete [5, 7].556

We here prove that the (non commutative) free monoid Σ∗ is affine557

complete as soon as its alphabet has at least two letters (generalizing [3]558

where the result was proved for |Σ| ≥ 3).559
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We also prove that the algebra of binary trees with labelled leaves is560

affine complete for every nonempty finite alphabet Σ, i.e., not assuming that561

|Σ| ≥ 2. This difference with the case of the free monoid might seem sur-562

prising. However since its product is not associative, the algebra of trees has563

more structure, hence more congruences, and thus less CP functions, than564

the free monoid.565
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