Costas Dimitracopoulos Dept. of History and Philosophy of Science National and Kapodistrian University of Athens ## The MacDowell-Specker theorem and miniaturizations 1 Conference for the retirement of Patrick Cegielski 28 June 2022 $\mathcal{LA} = \{<, +, \cdot, 0, 1\}$ PA Peano Arithmetic N standard model For \mathcal{M}, \mathcal{K} structures for $\mathcal{L}A$, \mathcal{K} is an elementary extension of \mathcal{M} , denoted by $\mathcal{M} < \mathcal{K}$, if $\mathcal{M} \subseteq \mathcal{K}$ and for all $\vec{a} \in \mathcal{M}$ and for all formulas $\varphi(\vec{x})$, $\mathcal{M} \models \varphi(\vec{a})$ iff $\mathcal{K} \models \varphi(\vec{a})$. For any $n \in \mathbb{N}$, Σ_n -elementary extensions are defined analogously and denoted by $<_n$. For \mathcal{M}, \mathcal{K} structures for $\mathcal{L}A$, \mathcal{K} is a proper end extension of \mathcal{M} , denoted by $\mathcal{M} \subset_e \mathcal{K}$, if $\mathcal{M} \subset \mathcal{K}$ and for all $a \in \mathcal{M}$ and for all $b \in \mathcal{K}$, if $b < \mathcal{K}$ a, then $b \in \mathcal{M}$ $\underbrace{\mathcal{M} \qquad \qquad new \ elements}_{\mathcal{K}}$ **Fact.** There exists a (countable) \mathcal{M} such that $\mathbb{N} <_e \mathcal{M}$ (Let \mathcal{M} be any (countable) non-standard model of $Th(\mathbb{N})$) **Problem.** Does this hold if we replace \mathbb{N} with a non-standard model of PA? R. Mac Dowell & E. Specker. Modelle der Arithmetik. (German) 1961 Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959) pp. 257–263 Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw. Zu jedem Modell M gibt es eine echte arithmetische Erweiterung M' von gleicher Mächtigkeit, so daß die Elemente von M'-M größer sind als die Elemente von M. **Theorem.** For every model \mathcal{M} of PA there exists \mathcal{K} (of the same cardinality) such that $\mathcal{M} <_e \mathcal{K}$. H. Gaifman. Models and types of Peano's arithmetic. Ann. Math. Logic 9 (1976), no. 3, 223–306. **Theorem.** For every model \mathcal{M} of PA there exists \mathcal{K} (of the same cardinality) such that \mathcal{K} is a conservative extension of \mathcal{M} . **Reminder.** For \mathcal{M}, \mathcal{K} structures for $\mathcal{L}A$, we say that \mathcal{K} is a conservative extension of \mathcal{M} , if for any $\vec{b} \in \mathcal{K}$ and any formula $\theta(u, \vec{v})$ there exist $\vec{a} \in \mathcal{M}$ and a formula $\psi(u, \vec{w})$ such that $$\{u: \mathcal{K} \models \theta(u, \vec{b})\} \cap \mathcal{M} = \{u: \mathcal{M} \models \psi(u, \vec{a})\}.$$ **Fact.** If \mathcal{K} is a conservative extension of \mathcal{M} , then $\mathcal{K} \subseteq_e \mathcal{M}$. **Aim.** Miniaturize the MacDowell-Specker theorem, i.e., prove versions when PA is replaced by one of its fragments. ## For $n \in \mathbb{N}$, - $I\Sigma_n$: induction for Σ_n formulas (plus base theory) - $B\Sigma_n$: $I\Sigma_0$ plus the collection schema $\forall t \forall \vec{z} [\forall x < t \exists y \varphi(x, y, \vec{z}) \rightarrow \exists s \forall x < t \exists y < s \varphi(x, y, \vec{z})]$ for any Σ_n formula $\varphi(x, y, \vec{z})$. J. B. Paris & L. A. S. Kirby. Σ_n -collection schemas in arithmetic. Logic Colloquium '77 (Proc. Conf., Wrocław, 1977), pp. 199–209, Studies in Logic and the Foundations of Mathematics, 96, North-Holland, Amsterdam-New York, 1978. **Theorem.** For any countable \mathcal{M} and $n \ge 2$, if $\mathcal{M} \models B\Sigma_n$, then there exists $\mathcal{K} \models I\Delta_0$ such that $\mathcal{M} <_{n,e} \mathcal{K}$. **Remarks.** (a) The result does not hold for n=1. (b) It is unknown what holds for n=0 (more on this later). **Problem.** Does the Paris & Kirby result hold for any model? P. G. Clote. A note on the MacDowell-Specker theorem. Fund. Math. 127 (1987), no. 2, 163–170. **Theorem.** For any \mathcal{M} and $n \ge 2$, if $\mathcal{M} \models B\Sigma_n$, then there exists $\mathcal{K} \models I\Delta_0$ such that $\mathcal{M} <_{n,e} \mathcal{K}$. P. Clote. Addendum to: "A note on the MacDowell-Specker theorem" [Fund. Math. 127 (1987), no. 2, 163–170]. Fund. Math. 158 (1998), no. 3, 301–302. **Theorem.** For any \mathcal{M} and $n \ge 2$, if $\mathcal{M} \models I\Sigma_n$, then there exists $\mathcal{K} \models I\Delta_0$ such that $\mathcal{M} <_{n,e} \mathcal{K}$. **Reminder.** For any $n \in \mathbb{N}$, $I \Sigma_n$ is strictly stronger than $B \Sigma_n$. P. Clote & J. Krajíček. Open problems. Arithmetic, Proof Theory and Computational Complexity (Prague, 1991), 1–19, vol. 23 of Oxford Logic Guides, Oxford University Press, 1993. Fundamental problem F. (Paris, Wilkie) Does every countable model \mathcal{M} of $I\Delta_0+B\Sigma_1$ have an end extension to a model of $I\Delta_0$ [59]? This is the most popular problem in the area but appears to be difficult and several problems below are related to it (and hopefully more tractable). **Problem*.** Does every countable model \mathcal{M} of $B\Sigma_1$ have a proper Σ_0 -elementary end extension to a model of $I\Delta_0$? **Fact.** For any structures \mathcal{M}, \mathcal{K} , if $\mathcal{M} \subset_e \mathcal{K}$, then $\mathcal{M} <_0 \mathcal{K}$. ([59]) A. Wilkie & J. Paris. On the existence of end extensions of models of bounded induction. Logic, methodology and philosophy of science, VIII (Moscow, 1987), 143–161, Stud. Logic Found. Math., 126, North-Holland, Amsterdam, 1989. **Theorem.** For any countable model \mathcal{M} of $B\Sigma_1$, if \mathcal{M} is $I\Delta_0$ -full, then there exists $\mathcal{K} \models I\Delta_0$ such that $\mathcal{M} \subset_e \mathcal{K}$. **Theorem.** For any countable $\mathcal{M} \models B\Sigma_1$, each of the following conditions implies that \mathcal{M} is $I\Delta_0$ -full: - (i) \mathcal{M} is short Π_1 -recursively saturated - (ii) $\mathcal{M} \models exp \ (exp \ denotes "exponentiation is total")$ - (iii) $I\Delta_0 \vdash \neg \Delta_0 H$ and there exists $\gamma \in \mathcal{M} \mathbb{N}$ s.t. $\mathcal{M} \models \forall x \exists y (y = x^{\gamma})$ - (iv) $I\Delta_0 \vdash \neg \Delta_0 H$ and there exists $a \in \mathcal{M}$ s.t. $\mathcal{M} = a^{\mathbb{N}}$. $I\Delta_0 \vdash \neg \Delta_0 H$: the Δ_0 hierarchy provably collapses in $I\Delta_0$ Remark ([59]). A direct proof that any countable model of $I\Delta_0+B\Sigma_1$ which is closed under exponentiation has a proper end extension to a model of $I\Delta_0$ may be obtained by mimicking the proof of Theorem 4 but with "Semantic Tableau Consistency of Γ " in place of Γ -fullness and adding a new constant symbol $\pi > \mathcal{M}$ to ensure that the end extension is proper. C. Dimitracopoulos & V. S. Paschalis. End extensions of models of weak arithmetic theories. Notre Dame J. Form. Log. 57 (2016), no. 2, 181–193. **Theorem.** For any countable model \mathcal{M} of $B\Sigma_1$, if \mathcal{M} satisfies any of the Wilkie-Paris conditions (i), (iii) and (iv), then there exists $\mathcal{K} \models I\Delta_0$ such that $\mathcal{M} \subset_e \mathcal{K}$. **Idea.** Prove variants of the Arithmetized Completeness Theorem, thus avoiding the use of $I\Delta_0$ -fullness. C. Dimitracopoulos & V. Paschalis. End extensions of models of fragments of PA. Arch. Math. Logic 59 (2020), no. 7-8, 817–833. **Theorem.** (a) Clote's result. (b) For any $\mathcal{M} \models I\Sigma_1$, there exists $\mathcal{K} \models I\Delta_0$ s. t. $\mathcal{M} \subset_e \mathcal{K}$. (recall $I\Sigma_1$ strictly stronger than $B\Sigma_1$) **Remark.** Result (b) follows from earlier work of A. Enayat and T. L. Wong - see T. L. Wong. Interpreting weak König's lemma using the arithmetized completeness theorem. Proc. Amer. Math. Soc. 144 (2016), no. 9, 4021–4024. A. Enayat & T. L. Wong. Unifying the model theory of first-order and second-order arithmetic via WKL $_0^*$. Ann. Pure Appl. Logic 168 (2017), no. 6, 1247–1283. For $n \in \mathbb{N}$, - $I\Delta_n$: induction for provably Δ_n formulas (plus base theory) $\forall x \forall \vec{y} (\varphi(x, \vec{y}) \leftrightarrow \psi(x, \vec{y})) \rightarrow I\varphi$, where $\varphi \in \Sigma_n$, $\psi \in \Pi_n$ and $I\varphi$ denotes the induction axiom for φ - $L\Delta_n$: least number principle for provably Δ_n formulas $\forall x \forall \vec{y} (\varphi(x, \vec{y}) \leftrightarrow \psi(x, \vec{y})) \rightarrow L\varphi$, where $\varphi \in \Sigma_n$, $\psi \in \Pi_n$ and $L\varphi$ denotes the least number axiom for φ **Theorem.** For any $n \ge 1$, $B\Sigma_n \Leftrightarrow L\Delta_n \Rightarrow I\Delta_n$ **Problem.** (Technical problem no. 34 in Clote & Krajíček) For $n \ge 1$, is $I\Delta_n$ equivalent to $B\Sigma_n$? T. Slaman. Σ_n -bounding and Δ_n -induction. *Proc. Amer. Math. Soc.* 132 (2004), 2449–2456. **Theorem.** (i) For $n \ge 2$, $I\Delta_n \Leftrightarrow B\Sigma_n$. (ii) $I\Delta_1 + exp \Rightarrow B\Sigma_1$ (hence $I\Delta_1 + exp \Leftrightarrow B\Sigma_1 + exp$). **Problem 1.** Does every model of $B\Sigma_1 + exp$ have a proper end extension satisfying $I\Delta_0$? **Problem 2.** Does every model of $I\Delta_1 + exp$ have a proper end extension satisfying $I\Delta_0$? Remarks. Without assuming Slaman's result, - (i) If "yes" to Problem 2, then "yes" to Problem 1. - (ii) If "yes" to Problem 2, then $I\Delta_1 + exp \Rightarrow B\Sigma_1$, i.e., (b) of Slaman's result follows. This is based on the fact that for any structures \mathcal{M}, \mathcal{K} , if $\mathcal{M} \subset_e \mathcal{K}$, then $\mathcal{M} \models I\Delta_0$. - C. Dimitracopoulos & V. Paschalis. End extensions of models of $I\Delta_1$. In preparation. **Theorem.** Every model of $I\Delta_1 + exp$ has a proper end extension to a model of IOpen (= induction for open formulas). N. Thapen. A note on Δ_1 induction and Σ_1 collection. Fund. Math. 186 (2005), 79–84. e_p is the axiom $\forall x \exists y (x < p(y) \land ``x^y \text{ exists"})$, where p is any primitive recursive function Theorem. $I\Delta_1 + e_p \Rightarrow B\Sigma_1$. **Remarks.** (i) Thapen's result implies part (b) of Slaman's result, since exp is (equivalent to) e_p for the specific primitive recursive function p(y)=y+1. (ii) Another instance of e_p is Ω_1 , i.e., the axiom $\forall x \exists y (y=x^{|x|})$, where |x| denotes the length of x, since Ω_1 is (equivalent to) e_p for the specific primitive recursive function $p(y) = 2^{y+1}$. **Problem.** Does every model of $I\Delta_1+e_p$ have a proper end extension satisfying $I\Delta_0$? **Theorem.** Every model of $I\Delta_1+e_p$ has a proper end extension to a model of IOpen. S. Boughattas. L'arithmétique ouverte et ses modèles non-standards. J. Symbolic Logic 56 (1991), 700–714. **Theorem.** Every model of *IOpen* has a proper end extension to a model of *IOpen*. **Remark.** $I\Delta_1+e_p$ is far stronger than IOpen, so our method needs a lot of improvement. **Theorem.** Every model of $I\Delta_1+e_p$ has a proper end extension to a model of IOpen. S. Boughattas. L'arithmétique ouverte et ses modèles non-standards. J. Symbolic Logic 56 (1991), 700–714. **Theorem.** Every model of *IOpen* has a proper end extension to a model of *IOpen*. **Remark.** $I\Delta_1+e_p$ is far stronger than IOpen, so our method needs a lot of improvement. PATRICK, TOUT LE MEILLEUR POUR VOUS! $\Pi ATPIK$, $T\Upsilon XEIN$ $API\Sigma TON!$ PATRICK, ALL THE BEST TO YOU!