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Résumé
La sémantique des jeux est une sémantique dénotationnelle centrée sur
l’interaction : preuves et programmes y sont représentés par des stratégies
modélisant, par le flot d’exécution, leur manière de réagir à leur environ-
nement. Malgré cette présentation intensionnelle, les sémantiques de jeux
ne suffisent pas à capturer certaines informations calculatoires annexes au
flot d’exécution telles que, par exemple, la production de témoins en logique
du premier ordre ou la consommation de ressources dans les langages de
programmation. Dans cette thèse, nous proposons un cadre général pour
enrichir les sémantiques de jeux concurrentes avec des annotations perme-
ttant de garder trace de ces informations. Ces enrichissements sont donc
aussi l’occasion d’investiguer plus avant l’expressivité des modèles de jeux
concurrents.

Nous construisons d’abord un modèle de jeux concurrent dans lequel
les coups joueurs d’une stratégie sont annotés par les termes d’une théorie
(in)équationnelle. Cette théorie est un paramètre de notre modèle et les
annotations permettent de refléter de manière compacte des informations
d’exécution n’ayant pas d’influence sur le flot d’exécution. Nous montrons
que le modèle ainsi construit préserve la structure catégorique compacte fer-
mée du modèle sans annotations.

Nous explorons ensuite l’expressivité des modèles annotés et présentons
deux interprétations nouvelles en sémantique des preuves et des programmes
: la première interprète les preuves de la logique classique du premier ordre
par des stratégies concurrentes avec échange de témoins, donnant une version
compositionnelle au théorème de Herbrand ; la seconde permet de refléter les
aspects quantitatifs liés à la consommation de ressources telles que le temps,
dans l’exécution de programmes concurrents d’ordre supérieur avec mémoire
partagée. Ces sémantiques mettent en avant la portée des informations cap-
turées dans leurs calculs respectifs, à savoir qu’elles n’influencent pas leur
flot d’exécution mais sont influencées par ce dernier.





Abstract
Game semantics is an interactive denotational semantics: a denotation speci-
fies the behaviour of a term/proof with respect to its environment. As such it
is one of the most intensional model available in the Curry-Howard commu-
nity. Despite their intensional perspective, game models still omit a number
of computational information such as witnesses in first-order logic or resource
consumption in programs. In this thesis we present a general framework for
enriching causal concurrent games models with annotations able to reflect
these pieces of information. These annotations can be of various nature, in
particular our enrichment is parametrised over any multi-sorted equational
theory and can also reflect structure upon it such as a partial order.

In our model, annotations on strategies can be viewed as side-
computations: the information they reflect is modified throughout interac-
tions but does not affect the general flow of control. From a semantics point
of view, this construction is motivated by two semantic problems from both
logic and programming languages :

1. On the logic side, our annotated games model specialised to first-order
terms enables us to give a novel interpretation of first-order classical
proofs as concurrent strategies carrying first-order witnesses. In par-
ticular, this answer the question of giving a compositional version to
Herbrand’s theorem while avoiding the usual proof sequentialization of
other denotational approaches.

2. On the programming language side, annotations on games offer intrin-
sic quantitative models. We show that those can be used to provide
denotational semantics for resource consumption analysis of concurrent
higher order programming language with shared memory.

These enrichments, strongly connected to the causal structure of concurrent
games, give an argument in favor of a causal and event-base meaning of
computations.
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Introduction (Français)

La sémantique des jeux est une sémantique dénotationnelle centrée sur
l’interaction : les preuves et les programmes y sont représentés par des straté-
gies modélisant, par le flot d’exécution, leur manière de réagir à leur environ-
nement. Malgré cette présentation intensionnelle, les sémantiques de jeux
ne suffisent pas à capturer certaines informations calculatoires annexes au
flot d’exécution telles que, par exemple, la production de témoins en logique
du premier ordre ou la consommation de ressources dans les langages de
programmation.

Dans cette thèse, nous proposons une construction générale permettant
d’enrichir le modèle des jeux concurrent à base de structures d’événements
avec des annotations afin de garder trace de ces informations. Nous ap-
pliquons ensuite cette construction sur les deux exemples précédemment men-
tionnés.

Sémantique de jeux
Les sémantiques de jeux sont des sémantiques compositionnelles (dénota-
tionnelles) pour les preuves et les programmes. Très intensionnelles, elles
représentent le calcul comme une interaction entre un joueur (P) et un op-
posant (O) : le programme et son environnement.

Sémantique des jeux pour les preuves

La sémantique des jeux pour les preuves [Coq95, Bla92, AJ94, HDP93,
BDER97, Mel05, Lau10] est héritière des travaux de Lorenzen [Lor60] qui
voit les formules logiques comme des jeux dont les règles caractérisent la
manière dont deux philosophes (ou joueurs) peuvent débattre de la véracité
d’une formule (l’un cherchant à prouver la formule, l’autre à la l’infirmer).
Cette interprétation s’étend naturellement aux preuves qui sont alors vues
comme des stratégies, c’est à dire des manières de débattre (interagir) avec
un Opposant. Toutes les stratégies ne sont pas bonnes pour convaincre
Opposant, on se restreint donc aux stratégies gagnantes c’est à dire aux
stratégies qui permettent de gagner le débat (aussi appelée la partie) à
chaque fois. Les conditions de gain d’une partie sont définies à l’avance :
elles sont spécifiées dans les règles du jeu.
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Dans les sémantiques de jeux pour la logique, une formule est interprétée
par un jeu. Par exemple, une formule dont le connecteur principal est le con-
necteur propositionnel ∧ sera interprétée comme un jeu pour lequel Opposant
commence et choisi l’une des deux sous-formules (la composante droite ou
la composante gauche du connecteur) sur laquelle il veut continuer le débat.
Ce choix correspond à un coup ; une fois le coup joué, le jeu continue sur la
sous-formule choisie. Prenons pour autre exemple une formule commençant
par un quantificateur existentiel ∃ : cette fois, le quantificateur correspondra
à un coup Joueur et Joueur devra fournir un témoin permettant d’instancier
la formule sous le quantificateur. Une fois le coup joué le jeu continuera sur
cette sous-formule.

Un des points clé des modèles de jeux dans l’interprétation de preuve est
leur structure catégorique : les modèles de jeux permettent de composer les
stratégies. En terme de preuves, cela signifie que ces modèles sont capables
d’interpréter la règle de coupure : la formule coupée est vue comme un jeu
commun sur lequel les deux stratégies peuvent interagir avec des intérêts
divergents (jeux duaux). Cette interaction est interne à la composition des
deux stratégies et est donc caché aux yeux d’un environnement externe qui
chercherait à invalider les formules restantes.

L’exploration des sémantiques de jeux pour la logique à mener à
divers modèles de preuves préservant l’élimination des coupures notam-
ment en logique linéaire propositionnelle ou intuitionniste, ou pour des
versions polarisées de la logique classique, parfois étendues au premier or-
dre [AJ94, HDP93, BDER97, Mel05, Lau10].

À retenir : Les sémantiques de jeux pour les systèmes logiques interprè-
tent les formules par des jeux et les preuves par des stratégies gagnantes.
Ces modèles de jeux sont compositionnels, ils permettent d’interpréter
l’élimination des coupures des systèmes considérés, et induisent donc une
notion de calcul.

Sémantique des jeux pour les programmes

Généralisant les idées issues des sémantiques de jeux pour les systèmes
de preuves, les sémantiques de jeux pour les langages de programmations
interprètent les types comme des jeux et les programmes comme des straté-
gies sur ces jeux. Cette vision suit l’idée qu’un programme est contraint par
son type et qu’il décrit le comportement d’un système par rapport à son
environnement.

Oubliant le plus souvent l’idée de gain, les modèles de jeux utilisés pour
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dénotés des programmes restent des modèles de jeux à deux joueurs (le Pro-
gramme et son envirOnnement) où les stratégies peuvent être composées par
interaction cachée. Dans ces modèles c’est donc la représentation des inter-
action (parties) et du contrôle du calcul induit qui prime. En particulier,
les coups d’un jeu représentent les événements calculatoires observables entre
un programme et son environnement et les règles du jeu en régulent (par-
tiellement) l’ordre. Chaque coup joué représente un passage de contrôle. En
plus du jeu, ce passage de contrôle peut également être régulé par des con-
traintes générales supplémentaires, permettant de restreindre les effets du
calcul représenté.

Comparativement à d’autres modèles dénotationnels tels que les do-
maines [Sco82], les modèles de jeux offrent une structure plus riche pour
l’interprétation des types et des programmes. De part leur représentation du
flot de contrôle ils sont très proches des sémantiques opérationnelles (c’est à
dire des sémantiques représentant le calcul par des systèmes de transition),
sans pour autant reposer sur la syntaxe des langages considérés. Pour cette
raison on dit parfois que les sémantiques de jeux sont des sémantiques dénota-
tionnelles “intensionnelles”, par opposition aux sémantiques dénotationnelles
précédentes plus extensionnels.

De part leur représentation fine du flot d’exécution, les modèles de jeux se
sont illustrés en sémantique des programmes, notamment en apportant une
réponse au problème fondamental de pleine adéquation (full abstraction) pour
PCF (un langage d’ordre supérieur avec point-fixe en appel par nom). Ces
réponses, indépendamment proposées par Hyland et Ong [HO00] et Abram-
sky, Jagadeesan and Malacaria [AJM00], ont ouvert la voie à une variété
d’autres modèles pleinement adéquats pour des langages combinant d’autres
primitives de calcul ou effets calculatoires tels que l’appel par valeur [HY97],
la mémoire (Idealised Algol) [AM96], les opérateurs de contrôle [Lai97], les
références [AHM98], les exceptions [Lai01], le non-déterminisme [HM99], la
concurrence [Lai06] ou les calculs probabiliste [DH02].

À retenir : La sémantique des jeux pour les langages de programmations
capture la notion de calcul par celle d’interaction : un programme correspond
à un ensemble de parties (i.e. une stratégie) sur un jeu représentant son
type ; chaque partie décrit une interaction possible du programme avec son
environnement. Les sémantiques de jeux sont modulaires : en faisant varier
les structures sous-jacentes à la description d’un jeux et d’une partie, les
modèles de jeux donnent une caractérisation à des primitives de calcul variées.
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Modèle de jeux concurrents Les modèles de jeux fondateurs en séman-
tique pour les langages de programmation sont des modèles de jeux séquen-
tiels [HO00, AJM00] : lors d’une partie, les coups Joueur et Opposant alter-
nent, signifiant qu’un joueur doit attendre que son adversaire ait joué avant de
pouvoir jouer de nouveau, forçant ainsi une interaction linéaire/séquentielle.

Pour interpréter des programmes concurrents, une première modification
aux modèles de jeux séquentiels a été donnée par Ghica et Murawski [GM08].
Leur modèle de jeux est dit par entrelacements car dans ce modèle, la con-
trainte d’alternance sur les interactions est supprimée : une interaction peut
donc être vu comme un entrelacement d’interactions séquentielles, un même
joueur pouvant jouer plusieurs fois de suite (tant que le jeu le permet) sans
attendre la réponse de son opposant. Ce comportement correspond par ex-
emple au fait qu’un programme peut lancer plusieurs calculs en parallèle
sans attendre que l’un termine avant de lancer le suivant. Ce modèle est
pleinement adéquat pour la “may”-équivalence.

Dans le modèle par entrelacement, toutes les chronologies possibles d’un
calcul parallèle sont représentées. Pour éviter cette énumération fastidieuse
mais aussi pour donner une sémantique plus centrée sur le flot de contrôle
que sur la chronologie des événements calculatoires, un second modèle de
jeux pour la concurrence, appelé modèle de jeux causaux ou encore modèle
vraiment concurrent a été introduit par Abramsky and Melliès [AM99] puis
étendu plus tard par Melliès et Mimram [Mel05, MM07] et Faggian et Pic-
colo [FP09]. Dans ce modèle, les interactions ne sont plus représentées par
des séquences de coups (ordres totaux) mais par des ordres partiels capturant
les relations de cause à effet entre les coups d’une partie. Dans ce modèle la
sémantique d’un programme est donc abstraite du choix de l’ordonnanceur
à l’exécution.

C’est dans la lignée de ces modèles de jeux causaux que s’inscrit le mod-
èle de jeux présenté dans cette thèse. En particulier notre modèle est un
enrichissement du modèle de jeux sur les structures d’événements développé
par Clairambault, Castellan et Winskel [CCW15, CC16, CCHW18] à par-
tir des travaux de Rideau and Winskel [RW11, CCRW17]. Ce modèle de
jeux a été activement enrichi ces dernières années, notamment afin de pren-
dre en compte les calculs (concurrents) probabilistes [CCPW18, CP19] ou
quantiques [CdVW19].

À retenir : Les modèles de jeux concurrents sont des modèles causaux
: les parties sont décrites par des ordres partiels de coups plutôt que par des
séquences de coups. En sémantique dénotationnelle, cela donne une vision
des programmes très proches de leur flot de contrôle.
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Motivations et résultats
À une large échelle, cette thèse participe à l’exploration de l’expressivité des
sémantiques dénotationnelles centrées sur le flot d’exécution (vision causale et
événementielle du calcul) en prenant pour point de départ le modèle des jeux
concurrent sur les structures d’événements [CCRW17] (ci-après simplement
nommé modèle de jeux concurrent).

Dans cette thèse, nous répondons en fait à deux problèmes de sémantiques
pour les preuves et les programmes pour lesquelles la nature causale des jeux
concurrents semble appropriée :

1. Rendre le théorème de Herbrand compositionnel: Le théorème
de Herbrand est un théorème fondamental en logique classique du pre-
mier ordre qui relie la validité d’une formule existentielle à celle d’une
disjonction finie correspondant à cette même formule, instanciée par
un nombre fini de termes clos appelés témoins de Herbrand de la for-
mule. Étant donnée une preuve classique pour une formule valide, il est
possible d’utiliser cette preuve pour calculer un ensemble de témoin de
Hebrand pour cette formule. Contrairement aux preuves, les témoins
de Herbrand ne peuvent cependant pas être composés. Une question
d’intérêt en théorie de la preuve est de comprendre quelles structures
mathématiques plus simples que les preuves peuvent capturer ces té-
moins, tout en restant compositionnelles [Hei10, McK13, HW13].
Les modèles dénotationnels pour les systèmes de preuves sont par
essence compositionnels. Un modèle dénotationnel pour les preuves
de la logique classique serait donc un bon candidat pour décrire de
telles structures. Cependant, très peu de sémantiques dénotationnelles
ont été développées pour la logique classique [FP07]. Cette défection
est liée au fait que la théorie équationnelle de l’élimination des coupures
du système de preuves classique est dégénérée et que l’on préfère donc
représenter des systèmes de preuves mieux formés et logiquement équiv-
alents tels que les système de preuves polarisés [Par92, Lau10].
Pourtant, dans les travaux les plus récents autours du théorème de Her-
brand, la structure syntaxique des arbres expansés (expansion trees) qui
généralise les témoins de Herbrand est souvent introduite au travers une
métaphore de jeux permettant de refléter la structure causale intrin-
sèque de ces témoins [Mil87, Hei10, HW13]. Forts de ces constats, nous
avons enrichi le modèle de jeux concurrent en augmentant les stratégies
de termes du premier ordre permettant d’interpréter les preuves de la
logique classique du premier ordre. En conséquence nous avons obtenu
une version compositionnelle du théorème de Herbrand.
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2. Avoir un modèle dénotationnel capable de rendre compte de
l’utilisation de ressources pour des calculs concurrents: La sé-
mantique dénotationnelle pour les programmes trouve sa source dans
l’étude de l’équivalence entre programme notamment pour donner une
bonne fondation à des manipulations de programmes telles que la com-
pilation. Habituellement on s’intéresse donc à des modèles dénotation-
nels qualitatifs, c’est à dire cherchant à capturer des propriétés sur les
programmes qui sont stables par réductions, telles que la terminaison
ou le résultat d’un calcul.
S’abstrayant des aspects les plus opérationnels du calcul, peu de mod-
èles dénotationnels permettent d’en représenter des propriétés quan-
titatives tels que leur efficacités en terme d’énergie, de temps ou
de consommation de ressources. Pourtant ces propriétés sont au
cœur des recherches en optimisations, une branche non négligeable de
l’informatique en ce qui concerne la transformation de programme. Il
semble donc important de proposer une sémantique pour ces transfor-
mations.
L’un des premiers (et rares) travaux menés dans cette direction [Ghi05,
LMMP13], est issu de la sémantique des jeux et donne une interpréta-
tion pour l’amélioration du temps d’exécution de programmes concur-
rents. Ce modèle, appelé modèle de jeux à jetons (slot games [Ghi05]),
est un enrichissement du modèle de jeux par entrelacements [GM08], il
ne peut donc pas rendre compte du temps d’exécution de deux threads
réellement exécutés en parallèle ; dans ce modèle, tout se passe comme
si le programme multi-thread était exécuté sur une machine à un seul
cœur. Pour rendre compte du temps d’exécution d’un calcul réelle-
ment parallèle, nous avons donc cherché à enrichir le modèle de jeux
concurrent en augmentant les stratégies de fonctions permettant de
représenter l’utilisation de certaines de ressources telles que le temps.
De cette construction nous avons tiré une interprétation correcte et
adéquate du langage R-IPA, un langage concurrent d’ordre supérieur
avec mémoire partagée dont la sémantique opérationnelle donne une
représentation explicite du temps d’exécution.

Donner un cadre général pour enrichir les jeux concurrents
d’annotations De part sa représentation du flot de contrôle le modèle de
jeux concurrent nous a offert le socle désiré pour construire les sémantiques
présentées ci-dessus. Cependant, dans les deux cas, le modèle a du être en-
richi pour refléter des aspects intéressants du calcul qui n’ont pas d’impact sur
le flot de contrôle et ne sont donc pas visibles dans le modèle tels que la pro-
duction de témoins en logique du premier ordre ou l’utilisation de ressources
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Figure 1: Exemple de stratégie an-
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Figure 2: Exemple de stratégie an-
notée issue de la partie III

des programmes concurrents. Dans les deux cas, ces enrichissements reve-
naient à donner plus de sens au fait de jouer un coup : dans le premier cas,
jouer un coup ∃ va de paire avec le fait de donner un témoin/terme du pre-
mier ordre ; dans le second cas, jouer un coup c’est aussi garder trace du
temps d’exécution nécessaire pour jouer ce coup.

Nous avons montré que ces enrichissements se généralisent dans un nou-
veau modèle de jeux concurrent avec annotations dans une théorie équation-
nelle multi-sortée : dans ce modèle chaque coup dans un jeu est associé à une
sorte telle que ce coup ne peut être joué au cour d’une partie que si son joueur
fournit en même temps un terme clos (une valeur) de cette sorte. La relation
de cause à effet entre les coups est ici importante car la valeur jouée peut être
utilisé par le joueur adverse pour produire ses propres valeurs (dans le cas
où les coups correspondant dépendent du coup joué). La valeur d’un coup
peut donc varier en fonction des interactions bien qu’elle n’a pas d’influence
sûr ces dernières : les aspects “quantitatifs” du modèle enrichi n’influent pas
sur les aspects “qualitatifs” du modèles de départ. En particulier le modèle
enrichi préserve la structure compacte fermée du modèle de jeux concurrent
sans annotation.

Dans cette thèse nous soulevons également la question d’un modèle de
jeux annoté dans lequel les annotations auraient un impact sur les interac-
tions mais conserveraient tout de même une structure catégorique compacte
fermée. Cette question n’est cependant pas pleinement développée car elle
dépasse le cadre des problèmes sémantiques traités dans cette thèse.

Résumé des chapitres.
Préliminaires

Chapitre 1 : donne un rappel des constructions du modèle des
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jeux concurrents sans annotations telle que décrites dans [CCRW17].
On insiste particulièrement sur la notion de composition entre stratégies
concurrentes et rappelle les méthodes de preuves utilisées pour montrer la
structure catégorique compacte fermée du modèle engendré.

Partie I : Stratégie annotées

Chapitre 2 : présente la construction générale pour notre modèle
de jeux annoté. Ce modèle, appelé T-CG, est paramétré par une théorie
(in-)équationnelle multi-sortée T. Cette construction générale est présentée
de manière introductive au travers différents exemples en particulier pour
des annotations de termes et de fonctions.

Chapitre 3 : détaille la preuve de la structure catégorique compacte
fermée de T-CG. Cette preuve s’inspire largement des méthodes de preuves
rappelées dans le chapitre 1 mais introduit une nouvelle catégorie de
structure d’événements annotées. On discute brièvement de l’utilisation
de cette catégorie pour construire un nouveau modèle de jeux concurrent
annoté dans lequel les annotations peuvent perturber les interactions.

Chapitre 4: conclut la partie I en présentant deux versions simplifiées
du modèle annoté qui seront effectivement utilisées dans les parties II et III.
Ces simplifications sont en fait des enrichissements des versions simplifiées
du modèle de jeux concurrent sans annotations, connus comme modèle de
jeux et stratégies élémentaires (elementary games and strategies) et modèle
de jeux à stratégies rigides (concurrent games and rigid strategies) dont nous
rappelons également les constructions.

Partie II: Stratégies à termes pour le théorème de Herbrand

Chapitre 5 : donne une introduction brève à la logique classique
du premier ordre et au théorème de Herbrand dans sa version moderne c’est
à dire exprimée en terme d’arbres expansés. On y donne également une
interprétation de ces arbres en terme de stratégies élémentaires annotées par
des termes. Cette interprétation nécessite l’ajout de conditions de gains au
modèle de jeux décrit dans le chapitre 4.

Chapitre 6 et Chapitre 7 : présente l’interprétation des preuves de la
logique classique du premier ordre (LK1) en terme de stratégies gagnantes
annotées. On se concentre d’abord sur l’interprétation de MLL1 (le fragment
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multiplicatif de la logique linéaire du premier ordre) puis on interprète les
règle de contraction et d’affaiblissement, complétant ainsi l’interprétation
de LK1. Cela nous permet de conclure sur notre version compositionnelle
du théorème de Herbrand et d’analyser quel comportement calculatoire des
preuves de LK1 se trouvé reflété dans notre modèle.

Partie III: Jeux concurrents pour l’analyse de ressources

Chapitre 8 : présente le langage R-IPA, une version du langage
R-IPA dont la sémantique opérationnelle est paramétrée par le type de
ressources à analyser (le temps dans le cas de R-IPA). On rappelle briève-
ment l’interprétation de ce langage dans le modèle de jeux à jetons pour
le mettre en regard avec la sémantique opérationnelle vraiment parallèle
que l’on se propose d’étudier. On donne ensuite l’interprétation de cette
version vraiment parallèle du langage dans le modèle de jeux annoté par
des fonctions, en prenant pour modèle la version simplifiée présentée dans le
chapitre 4 et restreinte aux jeux négatifs et bien filés.

Chapitre 9 : présente finalement la preuve de correction du modèle pour
R-IPA. On y montre aussi que ce modèle est adéquat dans le cas du temps.
Ceci n’est pas le cas en général car la sémantique opérationnelle du langage
dans le cas général n’est pas aussi fine que sa sémantique dénotationnelle.
On conclut cette partie en proposant une sémantique pour l’amélioration des
programmes concurrents de R-IPA.





Introduction (English)

This thesis presents a general framework for enriching causal concurrent
games with annotations. From a semantics point of view, this construction
is motivated by problems from both logic and programming languages.

On the logic side, an annotated games model specialised to first-order
terms yields a setting in which to interpret first-order classical proofs and
give a compositional version to the foundational Herbrand’s theorem. On the
programming language side, annotations on games offer intrinsic quantitative
models that can be used to construct a denotational semantics for resource
consumption of higher order programs with state and concurrency.

Game semantics

Over the rich field of denotational semantics for proofs and programs, game
semantics is usually considered as one of the most intensional semantics:
game models provide abstract frameworks to capture the meaning of com-
putations as interactions with an external environment, an Opponent.

Game semantics for proofs

Game semantics for proofs extends the seminal idea of Lorenzen [Lor60]
according to which the meaning of a formula can be understood as a game
ruling the way in which two players, a Proponent P and an Opponent O, can
dialogue (or play, or interact) in order to respectively prove or disprove the
formula. In a game, turns are represented by moves – attributed either to
Proponent or to Opponent – and, in order to determine who from Proponent
or Opponent makes the better point, a game also has winning conditions
that specify the winner at the end of an interaction/play.

For example, if the main connective of a formula is ∧, it is Opponent’s
turn to speak (play a move) to choose which of the two sub-formulas is then
going to be discussed. Ultimately, the winner of that game will be the winner
of the chosen formula. As another example, in first order logic, if the formula
is an existential formula (that is a formula starting with a ∃ quantifier) then
it is Proponent’s turn to play and she has to provide a witness (a first-order
term) before the two players keeps playing over the formula instantiated with
this witness.
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As incrementally shown by the game semantics community [Coq95, Bla92,
AJ94, HDP93, BDER97, Mel05, Lau10], this game semantics of formulas,
naturally extend to proofs, viewing the latter as strategies for P , that is, as
descriptions of how Proponent should react to Opponent during a play in
order to win. Since a proof for a formula cannot be refuted, game models of
proofs are restricted to winning strategies, that are strategies winning against
every Opponent.

A foundational aspect of game models being models of proofs, is that
they enjoy the categorical properties of the corresponding proof system, in
particular they have a notion of composition, realised via the interaction
between two strategies on dual games, that are, games interpreting a formula
and its negation.

To sum up: in games semantics for proofs, games models are made of
games (interpreting formulas) and winning strategies (interpreting proofs),
and, as they interpret cuts, they also support a notion of composi-
tion/computation.

Game semantics for programs

Although coming from logics, game semantics is better known for its success
in denotational semantics, that is, the study of the mathematical meanings
of programming languages

Following intuitions from the Curry-Howard correspondence that views
formulas as particular types and proofs as particular programs, in game se-
mantics for programming languages types are interpreted as games and pro-
grams as strategies. In particular, this reflects the idea that types “rule” the
way in which programs run and that programs are syntactic description of
how a system should react to its environment.

In general and contrary to games for logics, games for programming lan-
guages do not have winning conditions. Here the focus is kept on interac-
tions and how they are controlled. In particular games interpreting types
have moves corresponding to the computational events of these types and are
organised accordingly.

As for proofs, games for types are two-player games. Their moves are
distributed over Player and Opponent according to whether the correspond-
ing computational event gives control to the Program or to its envirOnment.
With more structure than earlier interpretation of types as domains [Sco82]
game models provide a richer space to interpret programs and in particular
to reflect their control flow.
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For these reasons, games models are often viewed as lying in between
abstract denotational semantics and operational semantics (i.e. the syntac-
tic formalization of their execution via transition systems): they enjoy the
compositional structure of the first one (making them suitable to interpret
contexts and open terms) while being rich enough to give a fine grained view
of the control flow of the second ones.

This mixed nature of games models is illustrated in the foundational
game semantics answers to the full abstraction problem for PCF (a call-by-
name higher order programming language with fixpoint operators) indepen-
dently provided Hyland and Ong [HO00], and by Abramsky, Jagadeesan and
Malacaria [AJM00]. As surveyed in [Pan17], these game semantics have since
then been successfully enriched and/or generalised to provide denotations for
various other computational features such as call-by-value [HY97] state (Ide-
alised Algol) [AM96], control [Lai97], references [AHM98], exceptions [Lai01],
non-determinism [HM99], concurrent and mobile processes [Lai06] and prob-
ability [DH02].

To sum up: in games semantics for programming languages, the mean-
ing of programs is given as strategies on games representing types. These
strategies are described by plays which represent the various way in which
a program may interact with its environment, constrained by the rules and
moves/computational events of its type. Games models are modular frame-
works: by varying the way in which they represent or constrain plays they
offer semantics to different kinds of computational features.

Concurrent game models

In the original sequential game semantics [HO00, AJM00], interaction be-
tween programs are represented as sequences of moves alternating between
Player and Opponent (the control flow of an interaction is then sequential
as each player must wait that for its opponent to reply before being allowed
to perform another move). In order to capture concurrency in programming
languages Ghica and Murawski described a model of games in which this
alternating condition is removed [GM08]. This interpretation of concurrency
yields an interleaving-based fully abstract model of games for concurrent pro-
gramming languages with respect to may equivalence. Here, that the model
is interleaving-based means that concurrency is captured by enumerating all
the possible chronological orderings between computational events.

To avoid such an enumeration and to remain more faithful to the causal
(“control-flow-based”) view of computation, an other family of games models
has been developed: the family of truly concurrent games models. Rather
than defining concurrency via every possible linear ordering of moves, these
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models chose to represent it via partial orders putting instead the emphasis
on the (in)dependencies between moves. In terms of games semantics for
concurrent programming languages this abstracts away all the choices of the
scheduler that are irrelevant from a computational point of view, namely, the
reorderings of independent events.

Causal games semantics was pioneered by Abramsky and Melliès [AM99]
and pushed forward by Melliès [Mel05] with Mimram [MM07], and by Fag-
gian and Piccolo [FP09]. In the past few ten years, they have been ac-
tively developed by Clairambault, Castellan and Winskel [CCW15, CC16,
CCHW18] with Paquet [CCPW18, CP19], and de Visme [CdVW19]; origi-
nally prompted by the introduction of a more general framework by Rideau
and Winskel and based on event structures [RW11, CCRW17]. It is upon
this last model, from now on referred to as the concurrent games model, that
the work presented in this thesis is built.

To sum up: in concurrent games model the description of interactions
is given through (partial) orders of moves rather than sequences of moves.
This put the emphasize on the causal relation of computational events rather
than on their chronological order. In the case of concurrent programming
languages this provides a more compact representation of programs than
interleaving-based models.

Motivations and results
Generally speaking, this thesis is motivated by the exploration of the expres-
siveness of a causal and event-based representation of computations using
concurrent games.

More precisely, in this thesis we address two semantic problems (introduce
with more details at the beginning of parts II and III) whose causal nature
prompts to an interpretation in the concurrent games model:

1. A compositional interpretation of Herbrand’s theorem: Her-
brand’s theorem is a foundational theorem in first-order classical logics
that reduces validity of an existential formula to that of the disjunction
of its instantiation with finitely many closed terms called the Herband
witnesses of the formula. Although extracted from proofs, these wit-
nesses cannot be composed: in general, given witnesses for ` A and
` A =⇒ B there is no direct way to deduce witnesses for ` B [Koh99].
Understanding how the structure of these witnesses can be elaborated
to allow composition (while preserving their original compactness) has
thus become a question of interest in proof theory, in particular as a
way to design alternative proof formalisms [Hei10, McK13, HW13].
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Herbrand’s theorem is also foundational in that its witnesses give a
computational content to cut-free first order classical proofs. On the
other hand, the computational content of proofs is a central question
in the Curry-Howard community, and denotational models are intrin-
sically compositional. Yet, as the equational theory of cut elimination
of classical logic is degenerated, only few studies have been carried on
to give an interpretation to the classical sequent calculus [FP07]; the
preference is given to better behaved systems, equivalent in terms of
provability, such as polarized versions of classical logic [Par92, Lau10].

In modern syntactic approaches to Herbrand’s theorem however, He-
brand’s witnesses are represented as certain trees (called expansion
trees) and given an intuitive game semantics to describe some of the
causal structure intrinsic to these witnesses [Mil87, Hei10, HW13].
Based on these works, we constructed a model of concurrent games
enriched with first-order annotations on events, suitable to embed ex-
pansion trees and interpret first-order classical proofs. Through seman-
tics, this yields a compositional version of Herbrand’s theorem.

2. A denotational framework for parallel resource consumption:
Denotational semantics for programming languages are usually moti-
vated by problems where understanding the notion of program equiv-
alence is crucial as e.g. in program compilation. For this reason, deno-
tational models for programming languages are often qualitative: they
capture properties of computation that are invariant under reduction
and ignore the others, such as efficiency of programs in terms of time,
power or other resource consumption, often referred to as quantitative
properties.

Yet, in the field of program optimisation, understanding the notion of
program improvements is crucial and needs semantical insight. It is
thus interesting to seek for quantitative denotational models of compu-
tation. Few studies have been carried along this line [Ghi05, LMMP13],
one primary work however comes from games semantics and provides
a semantical interpretation of concurrent program improvements with
respect to time consumption [Ghi05]. This model, called slot games, is
an enrichment of the interleaving-based model of [GM08] and as such
does not account for a truly parallel way of consuming resources (it
is as if the multi-threaded programs were executed on a one core ma-
chine instead of a multi-core one). It was thus natural to seek for an
enrichment of the concurrent games model that would provide a truly
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concurrent semantics for time consumption. So we did: endowing con-
current strategies with functional annotations, we provide a sound and
adequate games semantics for R+-IPA, a higher order concurrent pro-
gramming language with state, whose operational semantics allows for
parallel time consumption.

A concurrent games model with general annotations In both of
the works presented above, the original concurrent games model was close
to but not completely fit to reflect the intended meaning upon the proofs
and programs under study. In a sense, the model was lacking meanings on
moves/events. More precisely, in the case of first order-proofs, ∃-moves were
lacking first-order witnesses, and, in the case of time analysis, computational
events were lacking a record of the time they would take.

To add meaning to events, we enriched the setting of concurrent games
with annotations: on games, moves are given a “kind”, such that, when
playing a move of their own, P and O must also provide a value of that kind.
This value might in turn be used by the other player to compute values for its
own next moves (next being understood in the causal sense). This blends the
meaning of events into the more general structure of plays and interactions.

Common to both models, we subsumed the idea of having annotations on
events in a general framework that allows to enrich concurrent games models
with annotations from any multi-sorted inequational theory. This enrichment
faithfully preserves the categorical structure of the underlying model in the
sense that removing annotations goes back to the plain concurrent games
model. In particular, this means that annotations on events do not have im-
pact on the “qualitative meaning” of strategies (their control flow) although
they are themselves sensitive to variation that would otherwise be abstracted
away/hidden by the model.

As an open-ended perspective for future work, we also intuit a more
general model of annotated concurrent games in which annotations on events
(or quantitative aspects of the computations) may impact the way in which
players/strategies interact.

Outline of this thesis.
We give here a short summary of the various chapters composing this thesis.

Preliminaries

Chapter 1 recalls the constructions of the plain concurrent games
model based on event structures as presented in [CCRW17]. In particular
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Figure 4: A strategy from part III

it introduces the notion of concurrent strategies and interactions upon
them. In this chapter, we also remind the proof methodology to prove the
categorical structure of the resulting model CG; a compact closed category.

Part I: Annotated strategies

Chapter 2 presents our general construction for concurrent games
with annotations on events. It defines T-CG, the parametric concurrent
games model with annotations as terms from an (in)equational theory T.
This general construction is provided along with special cases of annotations,
in particular with first-order terms and functions.

Chapter 3 provides a detailed proof of the categorical structure of
T-CG – a compact closed category. The focus is actually put on Σ-CG,
the annotated model specialised to terms whose categorical structure is
equivalent to the one of T-CG after quotient. This proof is widely inspired
from the proof of the categorical structure of CG reminded in chapter 1.
Interestingly enough, it relies on the construction of a category of annotated
event structures in which annotations may interfere with interaction.

Chapter 4 concludes on the construction of the annotated games model,
by showing that, similarly to their plain counterpart, they can be simplified
and provide an enrichment for the models of elementary games and strategies
on the one hand, and concurrent games and rigid strategies one the other
hand. These simple models are actually the ones in used in the applicative
cases of part II and III.

Part II: Term-strategies for Herbrand’s theorem

Chapter 5 recalls first order logic and Herbrand’s theorem in its
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more modern version as expansion trees. It introduces the exact game
models in which expansion trees and proofs can be interpreted as strategies
with first-order terms, in particular by adding winning conditions to the
model introduced in chapter 4. This leads to a first reformulation of
Herbrand’s theorem.

Chapter 6 and Chapter 7 describe the actual interpretation of first or-
der proofs as winning strategies: in the first one we give the interpretation of
first-order multiplicative linear logic (MLL1); in the second one we add con-
traction and weakening to complete the interpretation of first order classical
proofs (LK1). From this we derive our compositional version of Herbrand’s
theorem and discuss some of the computational features of the LK sequent
calculus reflected in our model.

Part III: Resource tracking concurrent games

Chapter 8 introduces the language R-IPA, a general version of R+-IPA
mentioned above, for which the operational semantics is parametrised by the
resource being analysed (time in the case of R+-IPA). We sketch its interpre-
tation in slot games and present its parallel operational semantics. We then
present its interpretation as negative games and well-threaded strategies in
the simplified model of rigid R-strategies introduced in chapter 4.

Chapter 9 provides the proof of soundness of our model. It also shows
adequacy for an operational semantics specialized to time, first noting that
in general the parallel operational semantics is too coarse to fit the game
semantics one. As a conclusion we give a semantic interpretation of the
notion of improvement for concurrent programs of R-IPA specialised to time.



Chapter 1

Preliminaries on plain
concurrent games

In this chapter we recall the constructions of the plain concurrent games
model based on event structures as presented in [CCRW17]. In this model,
games are event structures that described how moves (events) connect with
one another, and strategies are morphisms of event structures to their tar-
geted games. This model is a causal game model, meaning that the total
chronological ordering of events in a play is abstracted away into a more
primitive notion of causality. This model also enjoys a notion of consistency
that allows for describing non-determinism.

Section 1.1 first introduces the base category of event structures from
which concurrent games and strategies are defined. In section 1.2 we make
these definitions precise and show that concurrent strategies support a com-
position operation for which games have identities, thus defining a category
of concurrent games and strategies called CG. Finally in section 1.3 we recall
the constructions showing actually CG is a compact closed category. All
results presented in this chapter can be found in [CCRW17] as well – with
minor changes in proofs to better fit our needs. These results and their proof
methodology are fundamental to the subsequent enrichment of concurrent
strategies with annotations which is the core of this thesis and is developed
in part I.

1.1 Category of event structures
This section introduces the basic category of event structures, E , over which
the concurrent games model à la Rideau and Winskel is built.

Event structures. Event structures were first introduced to reflect the
behavior of concurrent and non-deterministic processes through the observa-
tion of event occurrences [Win86]. These occurrences are ruled by causality
and consistency:
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Figure 1.1: The graph E and ConE form an event structure
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Figure 1.2: Dinner making event structure

Definition 1.1 ([CCRW17]). An event structure is a tuple (E,≤E,ConE)
where E is a set of events, ≤E is a partial order on E called causality and
ConE is a non-empty set of finite subsets of E called consistency, such that:

- finite history: ∀e ∈ E its causal history

[e] = {e′ ∈ E | e′ ≤E e}

is finite;

- reachability: ∀e ∈ E, {e} ∈ ConE;

- down-closure: ∀X ∈ ConE, ∀Y ⊆ X, Y ∈ ConE;

- ≤-closure: ∀X ∈ ConE, ∀e ∈ X, ∀e′ ≤E e, X ∪ {e′} ∈ ConE.

We will often omit the subscripts in ≤E, ConE if they are obvious from
the context, and use E both for the event structure and its underlying set of
events.

Figure 1.1 and 1.2 are examples of event structures, their causal order is
drawn from top to bottom (i.e. events at the top are minimal). We use them
to comment on the definition.
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Predecessors. For an event e ∈ E, the strict causality relation <E de-
scribes which events must occur before e can. These events are called the
predecessors of e, defined by e′ ∈ E such that e′ ≤E e and e′ 6= e. Written
[e), the set of predecessors of e is finite and equal to [e) = [e]− {e}.

Since ≤E is transitive and reflexive, it can be subsumed by the immediate
predecessor relation,

e′ _E e iff e′ <E e and ∀e′′ ∈ E,¬(e′ <E e
′′ <E e)

that distinguishes predecessors of e with no other events in between. We
have

Lemma 1.1. For E an event structure, ≤E= (_E)∗.

The directed graph on the left of figure 1.1 can now be reread: it depicts
a partial order where ◦1 has no predecessor, and is the unique predecessor of
events ◦2, ◦3 and ◦4, while ◦5 has two predecessors: ◦1 and ◦3.

Consistency. In definition 1.1, ConE defines the set of consistent subsets
of E. By condition down-closure, the set of consistent sets is closed under
set-inclusion. The other axioms ensure that the history of every event is
consistent. More generally, consistent sets are coherent with respect to ≤E:
if X ⊆ E is consistent then its down-closure [X]E = {e′ ∈ E | ∃e ∈ X, e′ ≤
e ∈ X}(= ⋃

e∈X [e]) is consistent.
Consistency is sometimes described using a binary conflict relation, e #E

e′, that is an irreflexive and symmetric relation that is up-closed with respect
to ≤E (i.e. for every e #E e′ and e′ ≤E e′′ then e #E e′′). In that case, a
subset X ⊆ E is consistent if no event is in conflict with an other. This is
clearly closed under set-inclusion and up-closure of #E with respect to ≤E
ensures that ConE is also down-closed with respect to ≤E. This characterisa-
tion of consistency is less general than the one in definition 1.1. For example
consistency of E on figure 1.1 cannot be described using conflicts. Yet, using
a conflict relation when possible has an advantage of conciseness as it can
always be subsumed by a minimal conflict relation ( ) :

e e′ iff e # e′ and ∀e′′ ∈ E,
{
e′′ <E e⇒ ¬(e′′ # e′)
e′′ <E e

′ ⇒ ¬(e′′ # e)

The consistency of F in figure 1.2 implies that only one dish can be cooked for
dinner – maybe because there are not enough ingredient to make everything
or maybe because the cook is tired. This consistency is simple enough to be
described by a conflict relation whose minimal conflicts are depicted directly
on the partial order F .
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Binary conflict relations are expressive enough to capture the semantics
of proofs and programs presented in Part II and III. For simplicity, in the
rest of this thesis, examples will be based on event structures with binary
conflicts, although the model will remain defined for general consistency.

Configurations Event structures characterise sets of configurations: for E
an event structure, x ⊆ E is a configuration of E if it is finite, down-closed
and consistent. Configurations are sometimes viewed as partial orders by
restriction of ≤E; we then write ≤x = ≤E ∩x2. The set of configurations of
E is denoted C (E). The empty configuration, ∅, or the causal histories, [e],
are examples of configurations. These latest configurations, with a unique
top element, are called prime configurations.

Configurations are partially ordered by inclusion. In fact, this partial
order can be subsumed by the covering relation

x−⊂y iff ∃e ∈ E, y − {e} = x

alternatively written x
e
−−⊂ when one wants to put the emphasis on the

atomic extension e. Starting from the empty configuration, configurations
can be reached inductively as chains of atomic extension:

Lemma 1.2. Let E be an event structure and x, y ∈ C (E) such that x ( y,
then there is there is a finite sequence of atomic extension

x
e1−−⊂x1

e2−−⊂ · · ·
en−−⊂ y.

Proof. Let e be a minimal event in y\x for the partial order ≤y, then, by
definition, x

e
−−⊂ defines an atomic extension. One can thus repeat this

process |y\x| times to get the desired chain.

On figure 1.3 we present an event structure (left) together with its partial
order set of configurations (right), organised following its covering relation.
This characterisation of configurations as chains of atomic extension gives a
process flavor to event structures: configurations are the observational result
of some sequences of events that respect causality and consistency.

Constructions on event structure Similarly to processes, event struc-
tures enjoy three majors constructions: synchronous product, asynchronous
product (or parallel composition) and projection [Win86]. We focus on the
last two, saving the first one for later.

For U, V two sets, we denote U ] V their (tagged) disjoint union {0} ×
U ∪ {1} × V . We set:
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Figure 1.3: An event structure and its (partially ordered) set of configurations

Definition 1.2. Let E1, E2 be event structures, then their parallel compo-
sition E1 ‖ E2 is the event structure defined by:

- Events: E1 ‖ E2 = E1 ] E2,

- Consistency: ConE1‖E2 = {X1 ]X2 | X1 ∈ ConE1 , X2 ∈ ConE2},

- Enabling: (i, e) ≤E2‖E2 (j, e′) iff i = j and e ≤Ei e′.

Every configuration x in C (E1 ‖ E2) is of the form (x1 ‖ x2) where
x1 ∈ C (E1) and x2 ∈ C (E2), denoted x1 ‖ x2. Hence, the set-inclusion on
configurations matches the set-inclusion of their component.

Definition 1.3. Let E be an event structure and V ⊆ E, then the projection
of E onto V is the event structure E ↓ V defined by:

- Events: E ↓ V = V ,

- Consistency: ConE↓V = {X ∩ V | X ∈ ConE},

- Enabling: v ≤E↓V v′ iff v ≤E v′.

In the definition above, V is often referred as the visible set of events.
Indeed, projection can be understood as hiding away events that are no
longer observable, namely the ones in the complement of V . Configurations
of E ↓ V can also be described using configuration of E: if x ∈ C (E) then
x ∩ V ∈ C (E ↓ V ). However, this description is not unique: a configuration
x ∈ C (E ↓ V ) can have several witnesses x′ ∈ C (E) such that x = x′ ∩ V .
To get back a correspondence, one restricts to visible configurations, that are
configurations of E whose maximal events (with respect to ≤E) are visible.
We have
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Lemma 1.3. Let E be an event structure and V ⊆ E, then for every con-
figuration x ∈ C (E ↓ V ) there is a unique a visible configuration, called the
minimal witness of x, denoted witE(x) ∈ C (E), such that witE(x) ↓ V = x.

Moreover, set-inclusion over minimal witnesses matches the one in C (E ↓
V ).

Morphisms Event structures are equipped with a notion of morphisms
that intuitively correspond to simulations of processes by preserving config-
urations and event occurrences:

Definition 1.4. Let E,F be two event structures, a function f : E → F is
a morphism of event structures if it

(i) preserves configurations: ∀x ∈ C (E), f(x) ∈ C (F );

(ii) is locally injective: ∀e, e′ ∈ x ∈ C (E), if f(e) = f(e′) then e = e′.

In the above, f describes a renaming of the events of E to events in F
so that (condition (i)) E can be viewed as a causal and conflict enrichment
of F . In that regard, condition (ii) ensures that every event that occurs in
E will necessarily be witnessed in F : for every configuration x ∈ C (E), the
restriction of f to x is a bijection

f�x : x ' f(x)

In other words, two distinct events in E, can only be mapped to the same
event in F if they are inconsistent with each other.

As an example, the event structure E from figure 1.1 can be mapped to
the event structure F on figure 1.2 in nine different ways: sending ◦1 to either
dough, tomatoes, pasta, then sending events ◦2, ◦3, ◦4 to any permutation
of salad, spaghetti,pizza.

Other simple examples of event structure morphisms are the identity
functions, the functional composition of event structure morphisms as well as
the parallel composition of morphisms (defined component-wise as expected).
In fact, it is routine to check that:

Theorem 1.1. Event structures and their morphisms define a category called
E. It has a monoidal structure given by (‖, ∅), where ∅ is the event structure
with no events.

We conclude this section by emphasizing the connection between event
structures and their configurations with a lemma that relates the two:
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Lemma 1.4 (Lemma 2.17 in [CCRW17]). Let A and B be event structures,
then there is a one to one correspondence between order-isomorphisms ϕ :
C (A) ∼= C (B) and isomorphisms ϕ̂ : A ∼= B, such that

ϕ̂(x) = ϕ(x)

for every configuration x ∈ C (A).

Proof sketch. From ϕ, for a ∈ A, ϕ̂(a) is defined as the unique event in
ϕ([a]) − ϕ([a)). From ϕ̂ to ϕ one simply takes ϕ(x) = ˆϕ(x). One can
then show that two parallel morphisms of event structures are equal if and
only if they are equal on their set of configurations, concluding the proof of
uniqueness.

1.2 Category of concurrent games and strate-
gies

In this section we recall how the category of event structures described above
can be used as a basis to define CG, the category of concurrent games and
strategies.

1.2.1 Games and strategies as event structures with
polarities

As briefly mentioned in section 1.1, event structures were first introduced in
semantics to give an unfolded representation of non-deterministic and con-
current transition systems such as Petri nets [Win86]. There, inconsistency
describes non-determinism and configurations match states of the system.

Following this idea, the concurrent games model based on event structures
takes games as event structures and set configurations as game positions. But
game semantics is a semantics of interaction and open terms; it has a notion
of players and strategies for those players.

Definition 1.5. An event structure with polarities, also called a game, is an
event structure A along with a function

polA : A→ {−,+}

The polarity function assigns each event, also called move, to a given
player. We write A+ = {a ∈ A | polA = +} for the set of Player moves, and
A− = {a ∈ A | polA = −} for the set of Opponent moves.
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JmemK = memW

wtt−

ok+

⊗ memR

r−

tt+ ff+

Figure 1.4: The composed game of memory cell.

Definition 1.6. Every game A has a dual A⊥ that corresponds to A with
reversed polarities.

The monoidal category of event structures extends straightforwardly to
polarities. Morphisms are those that preserve polarities and the extra polar-
ity component is treated as expected in parallel composition and projection.
We note EP for the corresponding category.

An example game is shown on figure 1.4. It depicts the game representing
the type of a memory cell. In this game Opponent has three moves available:
r,wtt,wff to respectively perform a read, a write true or a write false request
to the memory. Each of these moves enables in turn one or two appropriate
answers for Player. Contrary to sequential games, players do not necessarily
alternate when playing on a concurrent game. In the previous example,
configuration of JmemK may allow Opponent to play its three moves in a
row before Player actually gets to answer. Yet it may also happen that
Opponent and Player play one after the other. With no further restriction,
consistency and the causality relation can thus be seen as the rules of the
game.

Strategies. Generally in game semantics, strategies describe how play-
ers choose their next moves from a given position (if any available). This
amounts to selecting a way (or several ways in case of concurrency/non-
determinism) to navigate from one position to an other, following the rules
of the game. In concurrent games, strategies are implemented using mor-
phisms of event structures with polarities together with some constraints.

Definition 1.7. A strategy for Player on a game A is a morphism of event
structures with polarities σ : S → A that satisfies two sanity conditions:

(i) receptivity: ∀x ∈ C (S), if σ(x)
a−

−−⊂ then there exists a unique s ∈ S
(necessarily negative) such that x

s
−−⊂ and σs = a;

(ii) courtesy: ∀s, s′ ∈ S such that s _S s
′ and (pol(s), pol(s′)) 6= (−,+),

then σs _A σs
′.
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cell : memW ⊗ memR

wtt−
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r−
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ok+ ok+ tt+ ff+

Figure 1.5: A strategy for memory cell

The event structure S is called the support of σ.

Figure 1.5 depicts a strategy that plays on the memory game from fig-
ure 1.4; rather than giving the explicit mapping from its support to JmemK,
we directly label the events of cell with names from the move of the game.
More generally, a strategy σ : S → A can be viewed as a labelling of the
event in its support S with the moves in its targeted game A.

By relabelling the configurations of S, σ “selects positions” in A, then,
the fact that σ is a morphism ensures that the chosen positions really define
positions/configurations in A (def 1.4 (i)), hence that σ obeys the rules of A.

That σ is a morphism also ensures that it plays linearly with respect to A:
by condition (ii) in definition 1.4, two moves in S are labelled with the same
move in A only if they are inconsistent with each other. Such duplications are
often used in a strategy to internally remember some contextual information
or branching point. For example, on figure 1.5 the strategy mimics the
behaviour of a memory cell that has two ways of acknowledging a write (with
the ok move) depending on whether a read had already been performed or
not.

Receptivity and Courtesy in definition 1.7 put even more constraints on
the shape of S. From a game semantics point of view these constraints remain
intuitive:

(i) Receptivity ensures that a strategy for Player only has choices upon
Player moves: it must accept every move Opponent can play according
to the rules of the game. Uniqueness in receptivity stands for sanity:
it prevents Player from internally distinguishing an Opponent move
according for example to the context in which it occurs.

(ii) Courtesy requires than the only new immediate causal dependencies
introduced in S with respect to A are from negative moves to positive
moves. This follows the intuition that a player reacts to its opponent’s
moves. This also has to do with the asynchronous nature of concurrent
games: rather than playing face to face, one can imagine that in these
models the two players play several miles away. Positive and negative
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events can then be respectively thought as sending and receiving notifi-
cations and the order in which these notifications arrive or are received
is not guaranteed except if it is specified in the game itself. Hence, in
order to stay synchronised with its opponent, a player can only delay
its own (positive) moves relatively to its opponent’s (negative) move.

It should be clear from the above that the name of the events in the
support of a strategy does not really matter; what matters is their labelling
as moves in the targeted game, as well as their consistency and causality
relation. To strengthen this point, strategies are usually treated up to iso-
morphisms:

Definition 1.8. Two strategies σ : S → A and σ′ : S ′ → A are isomorphic,
written σ ' σ′, if there exists an isomorphism φ : S ∼= S ′ such that the
following diagram commutes:

S

σ ��

φ

∼ ''
S ′

σ′~~
A

1.2.2 Interaction of strategies.
Definition 1.7 introduces what are strategies for Player on a game A. Strate-
gies for Opponent (also called counter-strategies) are defined dually: they
are strategies for Player on the dual game A⊥. Strategies and counter strate-
gies can interact. Given two strategies σ : S → A and τ : T → A⊥ , their
interaction, denoted S ∧ T is closely related to the synchronous product for
processes mentioned in the previous section; it relies on the fact that the
underlying category E has pullbacks.

Intuitively, two strategies σ : S → A and τ : T → A⊥ interact with each
other by pairwise synchronising their moves. Two moves can be synchronised
if they are mapped to the same event in the game A and if they are available
in both of the strategies by the time they are played. For example, in the
picture below, the two ◦ events can synchronise but they can only do so after
the two • events did, as otherwise ◦ is not available in τ .

• •
_���◦

σ
��

◦

τ
��
• ◦
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Configurations of the interaction, are thus obtained from the empty config-
uration by successively adding synchronised pairs of events, that are, pairs
(s, t) ∈ S × T such that σ(s) = τ(t), with the sanity condition that s and t
are both available in their respective strategy.

A first attempt to characterise the configurations in S ∧ T is to take
the synchronised pairs of configurations, that are pairs of configurations
(xS, xT ) ∈ C (S) × C (T ) such that σ(xS) = τ(xT ). However, adding an
immediate causality ◦_ • in the strategy σ in the above example, the pair
({•, ◦}, {•, ◦}) would still define a valid synchronised pair in that sense, but
impossible to obtain from the empty configuration by adding one move at
a time. To exclude such a pattern, one further requires that the bijection
xS

σ' σ(xS) = τ(xT ) τ−1

' xT induced by a synchronised pair of configurations
(xS, xT ) is secured:

Definition 1.9. The bijection ϕ : xS ' xT induced by a pair of synchronised
configurations (xS, xT ) ∈ C (S)×C (T ) is secured if the reflexive and transitive
closure of

(s, t) ≤ (s′, t′) iff s ≤S s′ ∨ t ≤T t′

defines an order on the graph of ϕ, denoted ≤ϕ.

That ϕ is secured means that there are no loops in the graph of causal-
ity induced by ≤xS and ≤xT , so ≤ϕ can be linearised into a sequence of
synchronised moves.

The above gives a description of the set of configurations expected in the
interaction of σ and τ . From that it is possible to recover the corresponding
event structure S ∧ T . Let us sketch this construction.

First, one may be tempted to take synchronised pair of events as events
for S ∧ T . However, because of possible conflicts in S and T , the same
synchronised pair can have several (incompatible) causal histories in the in-
teraction.
Example 1.1. Let A = {•, ◦} and let σ and τ be defined by:

•1 •2 •
_���◦

σ
""

◦

τ
��

• ◦

Then the configurations of S ∧ T are expected to correspond to ∅, {(•1, •)},
{(•2, •)}, ϕ1 = {(•1, •), (◦, ◦)}, ϕ2 = {(◦1′ , •), (◦, ◦)}. The synchronised pair
(◦, ◦) appears twice with two different causal histories.
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In the example above, the two versions of (◦, ◦) must be distinguished. A
simple way for that is to annotate every synchronised pair of events by the
secured bijection corresponding to its causal history. In the above we would
get [(◦, ◦)]ϕ1 and [(◦, ◦)]ϕ2 .

To be more precise, let

Bsec
σ,τ = {ϕ : xS ' xT | ϕ a secured bijection for σ, τ}

be the set of secured bijections induced by σ and τ , then a secured bijection
ϕ ∈ Bsec

σ,τ is said to be prime if it contains a unique maximal synchronised
pair of event for ≤ϕ, denoted [(s, t)]ϕ. Although we drew intuition from the
interaction of strategies, interaction is defined for every two morphisms of
event structures sharing the same codomain:

Definition 1.10. Let σ : S → A, τ : T → A be two maps of event structures,
their interaction S ∧ T is the event structure defined by:

- Events: the prime secured bijections of Bsec
σ,τ ,

- Enabling: inclusion of the graphs of the secured bijections,

- Consistency: X is a consistent set of prime secured bijections if the
union of their graphs describes a secured bijection (i.e. (⋃ϕ∈X ϕ) ∈
Bsec
σ,τ ).

The interaction S∧T comes with two obvious projections Π1 : S∧T → S
and Π2 : S ∧ T → T , that are morphisms of event structures. Moreover, by
definition, these maps make the following diagram commutes in E :

S ∧ TΠ1
zz

Π2
$$

S

σ $$

T

τzz
A

In fact we have the following proposition:

Proposition 1.1. Let σ : S → A and τ : T → A be two morphisms of event
structures, then the construction (S ∧ T,Π1,Π2) defines a pullback in E.
We write σ ∧ τ : S ∧ T → A for the morphism of event structures given by
σ ◦ Π1 = τ ◦ Π2.

We do not detail the proof here as we will reprove this statement in
proposition 3.2 for the more general case of morphisms of annotated event
structures. We conclude however on an intermediate lemma that makes
explicit the strong correspondence between configurations in C (S ∧ T ) and
secured bijections. This is a restatement of Lemma 2.9 in [CCRW17].



1.2 Category of concurrent games and strategies 31

Lemma 1.5. For any configuration x ∈ C (S ∧ T ), x defines a secured bi-
jection ϕx = ∪x : Π1x ' Π2x. Moreover, the assignment x 7→ ϕx defines an
order-isomorphism C (S ∧ T ) ∼= Bsec

σ,τ (with both sets ordered by inclusion),
and there is a family of order-isomorphisms:

νx : x ' ϕx
[(s, t)]x 7→ (s, t)

that is natural in x.
For ϕ ∈ Bsec

σ,τ we also write xϕ ∈ C (S ∧T ) for the configuration such that
ϕxϕ = ϕ.

Proof. By definition of consistency in S ∧ T , ∪x is the graph of a secured
bijection. This mapping obviously preserves inclusion and its converse maps
a secured bijection ϕ to the set of elements of S ∧T included in ϕ. Then, by
definition of causality, νx also defines an order-isomorphism and naturality
is by definition.

This lemma is very useful for reasoning on configurations of an interac-
tion as it allows us to manipulate secured bijections rather than compatible
sets of prime secured bijections. This correspondence is precise enough that
reasoning on the events of the interaction in an ambient configuration, is the
same as reasoning on the synchronised pairs of the corresponding secured
bijection, transporting the reasoning through ν. In the sequel, we will of-
ten make use of this correspondence and transfer silently between the two
representations.

1.2.3 Composition of strategies
The previous section presents how strategies and counter-strategies over a
game A can interact. This construction is a bit rigid as it requires the
two strategies to play over the exact same game (with reverse polarities).
What if two strategies play over compound game and only share some dual
components? This question leads to view strategies as playing from one game
to an other.

Definition 1.11. A strategy is said to play from a game A to a game B if
it is of the form

σ : S → A⊥ ‖ B
When its support is not relevant, σ is simply noted σ : A + // B.

This definition implements the fact that σ is playing as Opponent on A
and as Player on B.
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Copycat strategy. Given a game A, a standard example of strategy from
one game to an other is the copycat strategy cc A : A + // A. As in sequential
games, this strategy propagates Opponent moves from one component to its
corresponding Player move in the other component. Formally

Definition 1.12. Let A be a game, then cc A : A + // A is the strategy

cc A : CCA

id
A⊥‖A−−−−→ A⊥ ‖ A

where CCA is the event structure described by:

- Events: those of A⊥ ‖ A,

- Enabling: the reflexive and transitive closure of

≤A⊥‖A ∪
{

(i, a) _ (1− i, a) | (i, a) ∈ (A⊥ ‖ A)−
}

- Consistency: X ∈ ConCCA iff [X]CCA ∈ ConA⊥‖A.

An example of copycat strategy is depicted in the middle of figure 1.6 for
the game A = •−◦+.

Composition. Given two strategies σ : A + // B and τ : B + // C, their
interaction is the morphism of event structures

τ ~ σ = (σ ‖ C) ∧ (A ‖ τ) : T ~ S → A ‖ B ‖ C

where C and A stand for the identity morphisms on C and A, and T ~ S is
a shortening for (S ‖ C) ∧ (A ‖ T ).

From the interaction τ ~ σ : T ~ S → A ‖ B ‖ C, one can get back
a strategy by hiding away events that correspond to moves in the common
component B and putting back polarities.

Definition 1.13. Let σ : A + // B,τ : B + // C be two strategies, the compo-
sition of σ and τ is the strategy τ � σ defined by

τ � σ = (τ ~ σ) ↓ V : T � S → A⊥ ‖ C

where V ⊆ T ~ S is the set of events in T ~ S that map to the outer games
A ‖ C and T � S is a shortening for (T ~ S) ↓ V with polarities inherited
from those of A⊥ ‖ C.

Example 1.2. Figure 1.6 shows the composition of a strategy σ : A with
the copycat strategy cc A : A + // A described earlier. Their interaction is left
visible in grey but the result after hiding lies under the rightmost game A.
One can note that (up to isomorphism), this is exactly σ.
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Figure 1.6: Composition with the copycat strategy for A = •−◦+

In what follows, we will see that in fact cc A is neutral for composition on
A. We will also review why composition of strategies is associative; turning
games and strategies (up to isomorphism) into a category.

Before moving to these two points we introduce a couple more useful
notations. Following lemma 1.5, the configurations of T ~S and their causal
order are described by secured bijections ϕ : xS ‖ xC ' xA ‖ xT such that
σ(xS) = xA ‖ xB and τ(xT ) = xB ‖ xC . Eliminating redundancy, ϕ can be
subsumed into the data of xS and xT . By extension, we will write xT ~ xS
for the corresponding configuration in C (T ~ S).

Similarly, following lemma 1.3, configurations in T �S correspond to vis-
ible configurations in T ~S. By lemma 1.5 again, these correspond to secure
bijections that are visible, i.e. such that their maximal synchronised pair of
events (with respect to ≤ϕ) are mapped to A ‖ C (though σ ◦ π1 = τ ◦ π2).
These bijection can still be characterised by the data of their corresponding
xS and xT . In that case, we write xS�xT for the corresponding configuration
in C (T � S). Note that in both case, the partial order on configurations is
reflected in the partial order of the components.

With these notations, it is immediate to see that the isomorphic relation
' on strategies is a congruence with respect to the composition:

Proposition 1.2. Let σ, σ′ : A + // B and τ, τ ′ : B + // C such that σ ' σ′

and τ ' τ ′, then
σ � τ ' σ′ � τ ′

Proof. Let ϕ1 : S ∼= S ′, ϕ2 : T ∼= T ′ be the isomorphisms of event structures
given by σ ' σ′ and τ ' τ ′. Then, following the remarks above there is an
order isomorphism

ϕ : C (T � S) ∼= C (T ′ � S ′)
xT � xS 7→ ϕ1(xT )� ϕ1(xS)
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Moreover ϕ̂ commutes with σ � τ and σ′ � τ ′, concluding the proof.

Associativity. Following [CCRW17], proving associativity for composition
requires technicalities that are unnecessary for the presentation of concurrent
games we are doing. We only sketch:

Proposition 1.3. Let σ : A + // B, τ : B + // C, ρ : C + // D then

ρ� (τ � σ) ' (ρ� τ)� σ

Proof sketch. This relies on the fact that interactions are pullbacks in E . By
universal property, this induces a morphism of event structure such that the
following diagram commutes

U ~ (T ~ S)
zz

��

oo aσ,τ,ρ

∼
// (U ~ T )~ S

��

$$

(T ~ S) ‖ D

zz 



(U ~ T )~ S

$$��
(S ‖ C) ‖ D

(σ‖C)‖D ))

rr ,,
(A ‖ T ) ‖ D

(A‖τ)‖D
��

ss ++
(A ‖ B) ‖ U

(A‖B)‖ρuu

rr ,,
S ‖ (C ‖ D)

σ‖(C‖D) ))

A ‖ (T ‖ D)
A‖(τ‖D)
��

A ‖ (B ‖ U)

A‖(B‖ρ)uu
(A ‖ B ‖ C) ‖ D A ‖ (B ‖ C ‖ D)

One can then show that hiding on B preserves this diagram and conclude.

Composition with copycat. Although we did not emphasize it, let us
note that the composition of strategies and its proof of associativity actually
holds for any morphisms of event structures with polarities of the form σ :
S → A⊥ ‖ B, without the receptivity and courtesy conditions to be necessary.
In EP these morphisms of are sometimes called pre-strategies from A to B
precisely because they support associative composition.

Courtesy and receptivity however are necessary to distinguish among pre-
strategies those for which the copycat strategies from definition 1.12 are neu-
trals for composition. To get a first intuition for this fact, let us study the
shape of the configurations of CCA. We first give a more explicit characteri-
sation of its causal structure:

Lemma 1.6. For (i, a), (j, a′) ∈ CCA, (i, a) ≤CCA (j, a′) iff

- i = j and a ≤A a′, or

- i = 0, j = 1 and a ∈ [a′]∗A; or

- i = 1, j = 0 and a ∈ [a′]A∗.
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where [a]∗A is the minimal configuration to reach [a]A with only negative ex-
tensions (i.e. [a]∗A = min{x ⊆− [a] | x ∈ C (A)}) and similarly for [a]A,∗ and
positive extensions.

Proof. The first case is trivial by definition of CCA. The two other cases have
similar proofs so we focus on the second one. The left implication is direct
following the definition of CCA: a′ ∈ [a]∗A implies that there exists a′′ ∈ A+

such that a′ ≤A a′′ ≤A a and so (0, a) ≤A (0, a′′) _ (1, a′′) ≤A (1, a′) in CCA.
For the right implication, first recall that (0, a) ≤ ccA (1, a) is equivalent

(cf.p. 21) to having a chain of immediate causal dependencies

(0, a) _ (i1, a1) _ · · ·_ (1, a′)

where _=_A⊥‖A or (1− ij, aj)− _ (ij+1, aj+1)+. Forgetting the information
for left and right component this gives a _ a1 _ · · · _ a′ where _=_A

or aj+1 = aj, hence a ∈ [a′]A. Then crossing from left to right component
implies that there is at least one immediate causal dependency of the form
(0, aj) _ (1, aj) with pol(aj) = +, hence a ≤A a+

j ≤A a′ and so a ∈ [a′]∗.

Proposition 1.4. Configurations in CCA are characterized by

x0 ‖ x1 ∈ C (CCA) iff x0, x1 ∈ C (A) and x1
−⊇ x0 ∩ x1 ⊆+ x0

where ⊆+ corresponds to extension with only positive moves, and similarly
for ⊆− and negative moves.
The relation − ⊇⊆+ defines a partial order, denoted v for short.

Proof. (⇒) That x0, x1 ∈ C (A) is immediate by consistency and causality
in CCA. Then the other condition followed by lemma 1.6 and down-closure.

(⇐) Two configurations x0, x1 ∈ C (A) are necessarily consistent in CCA.
By lemma 1.6 the condition x1 v x0 also ensures that x0 ‖ x1 is down-
closed.

The proposition above shows that the configurations in the left and right
components of copycat are almost mirrors of each other but not quite. There
might be a mismatch on Opponent moves. In fact, in concurrent games,
copycat strategies are sometimes referred as asynchronous forwarder as they
introduce uncontrolled delays while recasting Opponent moves: there is no
guarantee that the order in which Opponent moves are received is preserved
by the recast. That is the reason why, on top of being receptive, strategies
must be courteous – i.e. they must not assume anything else on the order
of negative events than what is imposed by the rules of the game.

In the rest of this section we recast the proof that copycat indeed acts as
the identity for the composition of strategies; the argument will be needed
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to extend the model with annotations. However we refrain to explain further
the characterisation of strategies as receptive and courteous pre-strategies is
exact, referring to [CCRW17] for additional details.

Proposition 1.5. Let σ : A + // B be a strategy, then σ� cc A ' σ ' cc B � σ.

Proof. We focus on the case where σ : S → A is post-composed by cc A, the
proof for pre-composition is similar and the proof for the more general case
is just more technical.

Following definition 1.8, the goal is to exhibit an isomorphism χ : S ∼=
CCA � S that commutes with σ and cc A � σ. With this in mind, let us show
that the mapping

χ : S →̃ CCA � S
s 7→ ϕ(σ([s]∗)‖σ[s])�[s]∗

does exactly the trick – recall that ϕx is the secured bijection associated
to a configuration x ∈ CCA ~ S, hence defines an event in CCA � S if the
corresponding configuration is prime.

The hardest part is to show that the above mapping actually is well-
defined and bijective. If it does, the rest follows: by definition σ = ( cc A �
σ) ◦χ and the corresponding isomorphism on configuration clearly preserves
⊆ hence, by lemma 1.4, χ defines an isomorphism of event structures with
polarities.

Let us first check that χ is well-defined, that is, σ([s]∗) ‖ σ[s] and [s]∗
are valid data to define a prime secured bijection. Clearly [s]∗ ∈ C (S) and
σ([s]) vA σ([s]∗) so, by proposition 1.4, σ([s]∗) ‖ σ[s] ∈ C (CCA). Moreover,
the bijection

ϕ : [s]∗ ‖ σ[s] ' (σ([s]∗) ‖ σ[s])
is secured as the partial ordering of cc A on A0 is the one of A, hence is
necessarily aligned with the one of S. It remains to prove that it is prime.
Writing (s, σ(s)) and (a, a) respectively for the synchronised pairs of events
((0, s), (0, σ(s))) and ((1, a), (1, a)) in ϕ, we show that ϕ has top event e =
(σ(s), σ(s)), as every other event e′ 6= e in ϕ is dominated, by case analysis:

- for e′ = (s′, σ(s′)) then s′ ∈ [s]∗, if s′ is not maximal in [s]∗ then e′ is
not maximal in ϕ via ≤S, if it is maximal, then s is positive and so
e′ ≤ (σ(s′), σ(s′)) via ≤CCA ;

- for e′ = (σ(s′), σ(s′)), then s′ ∈ [s]. Now if s′ negative and s′ ∈ [s]∗ then
e′ ≤ (s′, σ(s′)), via ≤CCA otherwise s′ _S s

′′ ≤ s with s′′ negative so,
by courtesy, σ(s′) _A σ(s′′) and so e′ ≤ (σ(s′′), σ(s′′)) via ≤CCA , finally
if s′ is positive then s′ _S s

′′ ∈ [s] so by courtesy e′ ≤ (σ(s′′), σ(s′′))
via ≤CCA .
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Finally we show that every prime secured bijection ϕ : xS ‖ xA ' σ(xS) ‖
xA that is visible, i.e. whose maximal event is of the form (a, a), is actually of
the form (σ([s]∗) ‖ σ[s])�[s]∗. First note that by proposition 1.4, xA v σ(xS)
so, by receptivity, there exists a unique x′S ∈ C (S), such that xS ⊆− x′S and
xA ⊆+ σ(xS). Moreover, a simple induction on ϕ shows that the mapping

f : ϕ → x′S
(s, σ(s)) 7→ s

(a, a) 7→ σ−1
x′S

(a)

preserves the partial order on ϕ. In particular events that correspond to
negative extensions in xA and positive extensions in xS are incomparable
with each other in ϕ (using courtesy in the second case)

Now, if ϕ is prime with top event e = (a, a) then this remark implies that
σ(xS) ⊆− xA and that x′S is prime, so x′S = [s] for some s ∈ S. Moreover
xS = (x′S)∗ – as otherwise this would contradict the maximality of e in x.
Summing up, this leads to (xS, xA) = ([s]∗, σ([s]).

1.3 Compact closed structure
The previous section introduces concurrent games and strategies as described
in [CCRW17] and shows that – up to isomorphism – they form a category
called CG. We now recall the result establishing that CG actually is a com-
pact closed category.

As a reminder, a compact closed category is a symmetric monoidal cat-
egory (C,⊗,1) in which every object A has a dual A∗ for which there exist
two morphisms (called the unit and co-unit)

ηA : 1 + // A∗ ⊗ A εA : A⊗ A∗ + // 1

such that the following equalities hold

A A

ηA∗ εA

= = A A

εA∗ ηA

A A

From a semantic point of view, compact closed models are desirable as they
come with a canonical interpretation of MLL on the logical side, and of the
linear lambda-calculus on the programming language side. In the sequel we
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will ensure that this categorical structure is always preserved by our various
extensions.

In CG, the tensor product is lifted from the monoidal structure of EP
and defined on games by A ⊗ B = A||B with neutral element the empty
game 1 = ∅.

For duality, A∗ is taken to be the dual game A⊥ and ηA and εA correspond
to “curryfied” versions of copycat

ηA : CCA → 1 ‖ (A⊥ ‖ A)
εA : CCA → (A ‖ A⊥)⊥ ‖ 1

This is not surprising as dual objects of a compact closed category can be
viewed as defining an adjunction

B + // A∗ ⊗ C
A⊗B → C

and the unit and co-unit mentioned above are respectively the image of idA
and idA∗ through this adjunction.

We refrain from recasting the proof of [CCRW17] showing that the ηA and
εA strategies satisfy the low of compact closure. Yet chapter 3 will be dedi-
cated to show that the extension of CG with annotations also has a compact
closed structure and will follow the same proof techniques as in [CCRW17]
hence introducing the technical details omitted here. We conclude this sec-
tion by detailing the symmetric monoidal structure of CG, sketching some
proofs from [CCRW17] and leaving others to chapter 3.

Symmetric monoidal structure CG is equipped with a bifunctor ⊗ that
performs parallel composition on games and strategies. More precisely A ⊗
B = A ‖ B and for σ : S → A⊥ ‖ C, τ : T → B⊥ ‖ D

σ ⊗ τ : S ‖ T σ‖τ−−→ A⊥ ‖ C ‖ B⊥ ‖ D γ−→ A⊥ ‖ B⊥ ‖ C ‖ D

where γ : A⊥ ‖ C ‖ B⊥ ‖ D → A⊥ ‖ B⊥ ‖ C ‖ D is the obvious isomorphism.
We write xS⊗xT for the configuration corresponding to γ(xS ‖ xT ) in C (S⊗
T ). Every configuration is of this form and ⊆ on C (S ⊗ T ) follows ⊆ on the
two components.

The following two lemmas justify that ⊗ is well-defined on strategy and
that it preserves the isomorphic relation.

Lemma 1.7. Let γ : A ∼= B be an isomorphism of games and σ : S → A be
a strategy, then γ ◦ σ : S → B also defines a strategy.
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Proof sketch. One can first check that the composition of courteous and re-
ceptive morphisms of event structure with polarities is courteous and recep-
tive; one can then see that isomorphisms of games are necessarily courteous
and receptive.

Lemma 1.8. Let σ, σ′ : A + // B and τ, τ ′ : C + // D such that σ ' σ′ and
τ ' τ ′, then

σ ⊗ τ ' σ′ ⊗ τ ′

Proof. This is similar to the congruence of ' with respect to �. For ϕ1 :
S ∼= S ′, ϕ2 : T ∼= T ′, the isomorphisms given by σ ' σ′ and τ ' τ ′, the above
lemma is a consequence of

ϕ : C (S ⊗ T ) ∼= C (S ′ ⊗ T ′)
xS ⊗ xT 7→ ϕ1(xS)⊗ ϕ2(xT )

being an isomorphism, such that ϕ̂ commutes with σ ⊗ τ and σ′ ⊗ τ ′.

For bifunctoriality, one can easily see that the tensor product preserves
identities:

Proposition 1.6. For every two games A and B, cc A⊗B ' cc A ⊗ cc B.

Proof. It is direct to check that

CCA ‖ CCB
γ //

ccA⊗ ccB **

CCA⊗B

ccA⊗Buu
A⊥ ‖ B⊥ ‖ A ‖ B

The preservation of composition is a little more involved, we only sketch
a proof for it and redirect the reader to [CCRW17] or chapter 3 for more
details:

Proposition 1.7. Let

σ1 : S1 → A⊥1 ‖ B1 τ1 : T1 → B⊥1 ‖ C1
σ2 : S2 → A⊥2 ‖ B2 τ2 : T2 → B⊥2 ‖ C2

be strategies, then,

(τ1 � σ1)⊗ (τ2 � σ2) ' (τ1 ⊗ τ2)� (σ1 ⊗ σ2)
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Proof sketch. Based on the observation that interaction is a pullback, there
is an isomorphism:

(T1 ~ S1) ‖ (T2 ~ S2)
(τ1~σ2)‖(τ1~σ2)
��

oo ∼ // (T1 ‖ T2)~ (S1 ‖ S2)
(τ1⊗τ2)~(σ1⊗σ2)


(A1 ‖ B1 ‖ C1) ‖ (A2 ‖ B2 ‖ C2) γ

∼ // (A1 ‖ A2) ‖ (B1 ‖ B2) ‖ (C1 ‖ C2)

This isomorphism preserves visible events (i.e. those that map to Ai or Ci)
hence it projects to an isomorphism between (T1 � S1) ‖ (T2 � S2) and
(T1 ‖ T2)� (S1 ‖ S2).

Finally the symmetric monoidal structure (CG,⊗, ∅), is obtained as a
lifting of the symmetric monoidal structure of (E , ‖, ∅).

Based on lemma 1.7 a first step is to note that post composition can be
used to rename the game components of a strategy:

Definition 1.14. Let σ : A + // B be a strategy and f : A ∼= A′ be a game
isomorphism, the left renaming of σ via f is the strategy

(f · σ) : S σ−→ A⊥ ‖ B f ||B−−→ A′⊥ ‖ B

Similarly, for g : B ∼= B′, the strategy (σ · g) : A + // B′ = (A ‖ g) ◦ σ defines
the right renaming of σ via g.

When acting on the outer components, renaming preserve composition.

Proposition 1.8. Let f : A ∼= A′, g : C ∼= C ′ be isomorphisms of games, let
σ : A + // B, τ : B + // C, be strategies then

τ � (f · σ) ' f · (τ � σ)
(τ · g)� σ ' (τ � σ) · g

Proof sketch. Based on the observation that interaction is a pullback, there
is an isomorphism:

T ~ S

ww ''

rr ,,
T ~ S

vv ''
S ‖ C

σ‖C ''

rr ,,
A ‖ T

A‖τww

rr
f‖T

,,
S ‖ C
σ‖C ��

A′ ‖ T

A′‖τ
��

A ‖ B ‖ C
f‖B‖C ��

A ‖ B ‖ C

f‖B‖C ((
A′ ‖ B ‖ C A′ ‖ B ‖ C

As above, this isomorphism preserves visible events and so defines an iso-
morphism for τ � (f · σ) ' f · (τ � σ) after projection.
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The above proposition is particularly interesting in the case of copycat
renaming as it yields a functorial action:

Proposition 1.9. Let f : A ∼= A′ be an isomorphism of game, its lifting, cc f ,
is defined as the copycat right renaming

cc f : A + // A′ = cc A · f

For f : A ∼= B and g : B ∼= C two isomorphisms of games, we have

cc (g ◦ f) ' ( cc g)� ( cc f )

Moreover, for every game A, cc A · idA = cc A

Using the above construction, the unitors, associators and commutators
of (E , ‖, ∅) can thus be lifted to isomorphic strategies in CG:

ρA : A ‖ ∅ → A
λA : ∅ ‖ A → A

sA,B : A ‖ B → B ‖ A
αA,B,C : (A ‖ B) ‖ C → A ‖ (B ‖ C)

 

cc ρA : A⊗ 1 + // A
cc λA : 1⊗ A + // A

cc sA,B : A⊗B + // B ⊗ A
cc αA,B,C : (A⊗B)⊗ C + // A⊗ (B ⊗ C)

By the functorial properties of the lifting, all the commuting diagram
satisfy by these isomorphisms in EP are lifted to CG. Furthermore, one
can check that these isomorphisms are natural, hence defining the unitors,
associators, and commutators for (CG,⊗,1). This leads to the conclusion
that:

Theorem 1.2. Games and strategies up to isomorphism, together with �,
(1,⊗) and (_)⊥ form a compact closed category CG.





Part I

Annotated strategies
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Annotated strategies

This part presents the core framework of this thesis: an enrichment of the
concurrent games model based on event structures [CCRW17] that allows for
annotated strategies. Annotated strategies correspond to regular plain strate-
gies where every Player move is played together with some side-information
whose value may vary according to those received from Opponent moves.
These pieces of information are said to be “on the side” as they do not in-
terfere with the interactions/execution flow of the strategies, meaning that
composing two annotated strategies preserves their causal plain structure.

The construction presented here is a unified model for the semantics de-
veloped in the next two parts of this thesis, it thus encompasses the case
where those pieces of side-information are terms that represent witnesses in
valid first-order classical proofs, and the case where they are functions over
reals that help analyse the resource consumption of higher order concurrent
programs with shared memory. More generally, this framework allows for
annotations with morphisms from any cartesian category and can also be
refined in order to reflect additional structure on the annotations such as
ordering.

In this part, we also show that the games model enriched with annotated
strategies – that are enrichment of CG – can be simplified to enrich other
concurrent games models such as concurrent games without non-determinism
or concurrent games and rigid strategies, that are strategies validating the
idempotence of non-determinism [CC16] (i.e. a∨a = a). These constructions
follow the correspondence between CG and these simpler models, which we
will recall. These simplified models are of interest as they will be the actual
models used in the next two parts.

The proofs techniques used in this development are those recalled in chap-
ter 1, inspired by [CCRW17]. Our main technical contribution lies in the
definition of a category of event structures with annotations that admits
pullbacks. In particular, we believe that this framework could serve as a
basis for other games models of annotated strategies in which annotations
do influence interactions of strategies. This direction however falls out of the
scope of this thesis.

Outline Chapter 2 presents our general construction for concurrent games
model with annotated strategies. It defines T-CG, the parametric category
of games and strategies with annotations as terms from an (in)equational
theory T. In particular, we show that both of the application cases from
part II and III mentioned above can be expressed as T-CG for a well chosen
T.
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Chapter 3 provides a detailed proof of the categorical structure of T-CG
– a compact closed category. The focus is actually put on Σ-CG, an instance
of T-CG whose categorical structure is equivalent to the general T-CG after
quotient. This proof is widely inspired from the proof of the categorical
structure of CG found in [CCRW17]. Its main novelty is the description of
a category of annotated event structures in which annotations may interfere
with interaction.

Chapter 4 concludes this part with a description of the two simplified
model of T-CG actually used in the applicative cases of part II and III. As
for CG, we first recall the construction of these models in the plain case,
before enriching them with annotations.



Chapter 2

Concurrent games with
annotations

This chapter presents a general construction for extending the category CG
of concurrent games and strategies (as recalled in chapter 1) with annota-
tions on strategies. It starts with a simple enrichment, where annotations
correspond to terms over a signature. This is then generalised to annotations
with expressions from an (in)equational theory, by the means of equivalence
classes of terms and order upon them. To illustrate the expressiveness of this
latest construction, a series of examples of instantiation is provided, gener-
alising further the setting to multi-sorted equational theory. In particular
this yields to a model of concurrent games and strategies with annotations
as morphisms from a cartesian category.

2.1 Σ-strategies

2.1.1 Preliminaries on terms
First order terms and signatures. A first order signature Σ is a set of
symbol declarations s ∈ Σn, where n is the arity of s, that is, its number
of arguments (possibly null). Given a signature Σ and a set of variables
V (disjoint from Σ), the set of terms over V generated by Σ is inductively
defined by:

t1, . . . , tn ∈ TmΣ(V) := x ∈ V
| (s) t1 . . . tn with s ∈ Σn

For t a term, its set of free variables is denoted fv(t) ⊆ V . By extension, if
T is a set of terms then fv(T ) = ⋃

t∈T fv(t). A term is closed if it does not
contain any free variables.

The category SubstΣ. Given two sets V and V ′ and a signature Σ, a Σ-
substitution is a mapping ρ : V Σ→ V ′ that associates every variable x ∈ V ′
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with a term ρ(x) ∈ TmΣ(V). Substitutions are described by their graphs
[x 7→ ρ(x)]x∈V ′ , shortened [ρ].

The substitution of a term t by ρ, denoted t[ρ], simultaneously replaces
every V ′-variable in t by its image via ρ. It is inductively defined on terms:

v[ρ] = v if v /∈ V ′
v[ρ] = ρ(v) if v ∈ V ′
((s) t1 . . . tn)[ρ] = (s) t1[ρ] . . . tk[ρ]

Substitutions can be composed

Definition 2.1. Let ρ : V1
Σ→ V2 and ν : V2

Σ→ V3 be two substitutions, then
ν ◦ ρ : V1

Σ→ V3 is defined as

ν[ρ] : V3 → TmΣ(V1)
x 7→ ν(x)[ρ]

Composition is associative and has obvious identities. Moreover for any
two V1, V2,

V1 ‖ V2
ι1

zz
ι2

$$
V1 V2

defines a cartesian product – for ‖ the disjoint union V1 ] V2 and ιi the
corresponding injections in Set/projections in Subst. Hence,

Theorem 2.1. Given a signature Σ, sets and Σ-substitutions over them form
a cartesian category, denoted SubstΣ.

Transposition. Given two isomorphic sets of variables ρ : V1∼=V2, the
bijection ρ defines an isomorphism in SubstΣ that can be used to transport
substitutions. For, µ : V1

Σ→ V1 we define its transport via ρ, by

ρ.µ : V2
Σ→ V2 = ρ−1 ◦ µ ◦ ρ

In particular _[µ][ρ] = _[ρ][ρ.µ], ρ−1.(ρ.µ) = µ, and for ρ1 : V1 ∼= V2,
ρ2 : V2 ∼= V3, ρ2.(ρ1.µ) = (ρ2 ◦ ρ1).µ.

Syntactic unification. Given two terms t ∈ TmΣ(V1), t′ ∈ TmΣ(V2), we
say that t′ is an instance of t, written t � t′, if there is a substitution
ρ : V2

Σ→ V1 such that t[ρ] = t′. This defines a pre-order on terms which
extends to substitutions as follows:
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Definition 2.2. Let ν : V1
Σ→ V0, ρ : V2

Σ→ V0, we say that ν subsumes ρ,
written ν � ρ, if there is a substitution µ : V2

Σ→ V1 such that ν ◦ µ = ρ.
(Equality here is the usual component-wise equality.)

In unification theory, this can be rephrased as a matching prob-
lem [Gog89]: saying that ν � ρ is equivalent to saying that there exists
a solution µ : V2

Σ→ V1 to the finite set of inequations

{ν(x) �̇ ρ(x)}x∈V0

In general, a matching problem does not have a unique solution.
Example 2.1. Consider ν, ρ : {x1, x2}

Σ→ {x1, x2} two parallel substitutions
such that ν = [(f)x2/x1, x2/x2], ρ = [(f)c/x1, x2/x2], then any substitution
µ = [t/x1, c/x2] for t ∈ TmΣ({x1, x2}) is a solution to the corresponding
matching problem. In particular, ρ itself is a solution.

In the example above, one can note that ν and ρ are idempotent sub-
stitutions, meaning that they are endo-substitutions ν : V → V such that
ν ◦ν = ν. In the particular case of idempotent substitution the above remark
on ρ being a solution to the matching problem is always true:

Lemma 2.1. Let ν : V Σ→ V , ρ : V ′ Σ→ V be two substitutions such that ν � ρ
and ν is idempotent, then ν ◦ ρ = ρ.

Proof. By definition there exists µ : V Σ→ V such that ν ◦ µ = ρ, hence, by
idempotence ρ = ν ◦ µ = (ν ◦ ν) ◦ µ = ν ◦ (ν ◦ ρ). This is equivalently shown
on the following diagram. V ′

ρ 11

ρ //

µ   

V

V
ν ��

ν

??

V

ν

OO .

In unification theory, we also say that two terms t, t′ ∈ TmΣ(V) can
be equalised if there is a substitution µ : V Σ→ V such that t1[µ] = t2[µ].
Unification problems, then, are finite sets of term-equations of the form

{ti=̇ t′i}i∈I

for some index set I. In SubstΣ they are captured via the notion of equal-
izer [Gog89]:

Theorem 2.2 (“Herbrand-Robinson”). Two parallel substitutions ρ, ν :
V1

Σ→ V0 have an equalizer µ : V2
Σ→ V1 iff the unification problem

Uρ,ν = {ρ(v) =̇ ν(v)}v∈V0 has a solution.
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Sketch. That µ is a solution for the corresponding unification problem is
immediate since ρ ◦ µ = ν ◦ µ by definition.

The contrapositive arises from the actual Herbrand-Robinson theorem
that states that if a matching problem has a solution then it has one that
is minimal for �, called its most general unifier [BN98]. Let U be a unifica-
tion problem with free variables in V , an algorithm for computing this most
general unifier is as follows:

let rec mgu U = match U with

| ∅ → idV
| U ] {v =̇ t} or U ′ ] {t =̇ v} with v ∈ V and v /∈ fv(t)
→ let µ = mgu U [v 7→ t] in µ[v 7→ t[µ]]

| U ] {(f) s1 . . . sn =̇ (f) t1 . . . tn} with f ∈ Σn

→ let µ′ = mgu U ] {si =̇ ti}ni=1 in µ[µ′]
| _→ Abort

Using an appropriate measure it is easy to show that this algorithm termi-
nates and one can follow the same induction to show that the return value
has the universal property of an equalizer.

The algorithm above will be crucial in the process of composition of
strategies with term annotations introduced later. Taking ρ and ν as in
example 2.1, a possible run of the algorithm is

(U , µ) =̇ ({(f)x2 =̇ (f)c, x2 =̇ x2}, [x1/x1, x2/x2])
→ ({x2 =̇ c, x2 =̇ x2}, [x1/x1, x2/x2])

→ ({c =̇ c}, [x1/x1, c/x2])
→ ({}, [x1/x1, c/x2])

Because ν and ρ share the same set of variable, an other unification problem
can be issued:

U ′ρ,ν = {v =̇ ρ(v), v =̇ ν(v)}v∈V
In that case, a possible run of the algorithm is

(U , µ) =̇ ({x1 =̇ (f)x2, x1 =̇ (f)c, x2 =̇ x2}, [x1/x1, x2/x2])
→ ({(f)x2 =̇ (f)c, x2 =̇ x2}, [(f)x2/x1, x2/x2])

→ ({x2 =̇ c, x2 =̇ x2}, [(f)x2/x1, x2, x2])
→ ({c =̇ c}, [(f)c/x1, c/x2])

→ ({}, [(f)c/x1, c/x2])

One can note that in the above the resulting substitution µ is idempotent
and such that ρ � µ and ν � µ. In fact, reasoning again by induction on the
algorithm one can show that:
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Corollary 2.1. Let ρ, ν : V Σ→ V be two idempotent parallel substitutions, if
the unification problem U ′ρ,ν has a solution then ρ and ν have an idempotent
maximum with respect to �:

ρ � µ � ν

Moreover, by lemma 2.1, µ : V Σ→ V is such that µ ◦ ρ = µ = µ ◦ ν.
Furthermore, one can make explicit the relation between the unification

problems Uρ,ν and U ′ρ,ν :

Lemma 2.2. Let ρ, ν : V Σ→ V be two idempotent parallel substitutions, then
Uρ,ν is solvable iff U ′ρ,ν is solvable.

Moreover, every solution for U ′ρ,ν is a solution for Uρ,ν.
Proof. The left implication follows by definition: if µ is a solution for U ′ρ,ν ,
then for every v ∈ V , ρ(v)[µ] = v[µ] = ν(v)[µ] hence µ is a solution for Uρ,ν .

For the right implication, consider µ a solution of Uρ,ν and take µ′ : V Σ→ V
to be the substitution equal to µ on F = fv(ρ(V)) ∪ fv(ν(V)) but defined by
µ′(v) = ν(v)[µ] for every v /∈ F . By definition, µ′ is a solution for Uρ,ν : every
change that have been made in comparison with µ are on variables that do
not appear in Uρ,ν . We are now in a good shape to prove that µ′ also defines
a solution for U ′ρ,ν : let us first note that if v ∈ F then, by idempotence, either
ρ(v) = v or ν(v) = v, so ρ(v)[µ′] = v[µ′] = ν(v)[µ′]; now, if v /∈ F then, by
definition v[µ′] = ρ(v)[µ′] = ν(v)[µ′]. Concluding that U ′ρ,ν is solvable.

This algorithmic and categorical view will both give insight to further
development, especially in Chapter 3.

2.1.2 Σ-strategies
We now give a first definition of annotated strategies, restricted to annota-
tions with terms over a signature. The aim is to define a game model where
every event is played together with some information – in the shape of a first
order term. To this end, strategies provide for every positive move an open
term, its annotation, that describes how this information relates to the one
of its negative predecessors. This follows the idea that a strategy is defined
in reaction to its opponent behaviour.
Definition 2.3. Let Σ be a first order signature, a Σ-strategy is the data of
a plain strategy σ : S → A together with an Σ-annotation

λσ : (s ∈ S+)→ TmΣ([s]−)

We write σ : A Σ
+ // B for Σ-strategies from A to B.
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Figure 2.1: Examples of Σ-strategies

The above definition says that every positive move of a Σ-strategy comes
equipped with a term whose free variables are named after the negative
moves in its causal history. These variables can be thought as unknown
data. In a game model, it makes sense for these data to be provided by
Opponent via its own annotations. The restriction to negative variables
in the causal history of a positive move is there to ensure that the data
needed is always provided by the time a move is actually played. Other
than that, there are no restrictions on how to use predecessors’ informations.
This is illustrated in Figure 2.1 where positive events are decorated by their
annotations in superscript. On the left terms are built over Σ ⊇ {c0, f 1, g2}
and λσ(•0), λσ(•1), λσ(◦2) respectively depend on no variables, all negative
predecessors (here this also matches the set of all immediate predecessors)
and some negative predecessors. On the right, we give the annotated version
of the copycat strategy for A which we will comment later on.

As in the plain case, the actual names of events in the support of a Σ-
strategy do not matter; only their structure and annotations count. Following
definition 1.8, Σ-strategies are considered to be isomorphic up to renaming
of their events:

Definition 2.4. Let σ, σ′ be two Σ-strategies on the same game, then σ

and σ′ are isomorphic, denoted σ ' σ′, iff σ
ϕ
' σ′ as plain strategies and ϕ

preserves annotations i.e. ϕ.λσ = λσ′ .

This definition will find another justification later on (via definition 3.10
and proposition 3.9).

Composition. Σ-strategies compose following the same interaction and
hiding process as plain strategies (see section 1.2.2 and 1.2.3) but with addi-
tional work to compose their annotations. Annotations on their interaction
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Figure 2.2: Example of interaction and composition between two Σ-strategies

are defined by the mean of (mutually inductive) substitutions: Every neg-
ative free variable in the annotation of a strategy that is associated with a
move from the common game is substituted by the annotation of its corre-
sponding move in the counter-strategy. If however these negative variables
correspond to a move in the outer games, then it is left open. More formally:

Lemma 2.3. Let σ : A Σ
+ // B and τ : B Σ

+ // C be two Σ-strategies then there
is a unique

λτ~σ : T ~ S → TmΣ(T ~ S)
such that λτ~σ([(s, t)]ϕ) =

1. λσ(s)[Π−1
1,ϕ][λτ~σ] if s ∈ S+,

2. λτ (t)[Π−1
2,ϕ][λτ~σ] if t ∈ T+,

3. [(s, t)]ϕ otherwise.

Proof. The function λτ~σ can be defined by well-founded induction on <τ~σ

following the above characterisation: cases are disjoint and exhaustive, and
for the first two cases, the substitution by λτ~σ is well defined since free vari-
ables in λσ(s) are negative predecessors of s in σ and so have a corresponding
event in the causal history of [(s, t)]ϕ. That is

fv
(
Π−1

1,ϕ ◦ λσ(s)
)
⊆ Π−1

1,ϕ([s]−) ⊆ [[(s, t)]ϕ)T~S

And similarly for Π−1
2,ϕ ◦ λτ (t).

Figure 8.9 displays an example of interaction between two Σ-strategies.
The resulting composition is obtained as in the plain case by hiding away
the grey events, that are moves from the shared game A on the left. Hiding
in this case is still well-defined at the level of annotations as for every [(s, t)]ϕ

fv(λτ~σ([(s, t)]ϕ)) ⊆ ϕ−
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where ϕ− is a shortcut to designate events in the causal history of [(s, t)]ϕ
whose projection via τ ~ σ is negative in A⊥ ‖ C. We set

Definition 2.5. The canonical annotation for τ � σ is defined by

λτ�σ := λτ~σ�(T�S)+

Categorical structure. The compact closed structure of CG is preserved
by its extension with annotations. Let’s first focus on the purely categorical
part (forgetting for now the compact closure).

For associativity of composition one can simply check that given σ :
A

Σ
+ // B, τ : B Σ

+ // C and ρ : C Σ
+ // D the isomorphism ϕ : ρ � (τ � σ) '

(ρ�τ)�σ defined at the level of plain strategies (cf Proposition 1.3) preserves
annotations. However, this requires to make explicit the above isomorphism
and a fastidious check. In Section 3.1.2, we’ll see that annotations of inter-
actions actually correspond to the most general unifiers of some unification
problems and prove associativity from there using their universal property.
For now we simply claim:

Proposition 2.1. Let σ : A Σ
+ // B, τ : B Σ

+ // C, ρ : C Σ
+ // D with isomor-

phism ϕ : ρ�(τ�σ) ' (ρ�τ)�σ on plain strategies given by proposition 1.3,
then ϕ.λρ�(τ�σ) = λ(ρ�τ)�σ.

Figure 2.1 shows how plain copycat strategies can be given an annotated
version: annotations on positive moves simply forwards the annotation re-
ceived from their negative immediate predecessors.

Definition 2.6. Let A be a game, cc A : A Σ
+ // A is the plain copycat strategy

with annotation
λ ccA((i, a)+) = (1− i, a)−

As expected, this strategy is still neutral for composition.

Proposition 2.2. For every Σ-strategies σ : A Σ
+ // B, τ : C Σ

+ // A,

σ � cc A ' σ and cc A � τ ' τ

Proof. We focus on the case where σ : A is post-composed by cc A; pre-
composition is symmetric and the more general case where σ : B + // A fol-
lows the same reasoning, only with more technical details.

Building up on the proof for plain strategies 1.5, there is an isomorphism
χ : S ∼= CCA � S that sends s ∈ S to the prime and visible event (σ([s]∗) ‖
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σ[s])� [s]∗ ∈ CCA � S. Hence to conclude on the above it is enough to check
that this isomorphism preserves annotations.

Let ϕ be the prime secured bijection defined by (σ([s]∗) ‖ σ[s]) � [s]∗
and let x be the corresponding configuration in CCA ~ S. Following the
equivalence between secured bijections and configurations in the interaction
of two strategies (lemma 1.5), the annotations on CCA~S can be transported
onto synchronised pairs in ϕ to define

λϕ = νx.(λCCA~S)�x : ϕ→ TmΣ(ϕ)

– recall that νx : x ' ϕ. Writing (s, σ(s)) and (a, a) respectively for the syn-
chronised pairs of events ((0, s), (0, σ(s))) and ((1, a), (1, a)) in ϕ, lemma 2.3
simplifies into

1. λϕ(σ(s−), σ(s−)) = (σ(s−), σ(s−)) = (νx ◦ χ)(s−)

2. Hence,
λϕ(s−, σ(s−)) = λ ccA(0, σ(s−))[π−1

2 ][λϕ]
= (1, σ(s−))[π−1

2 ][λϕ]
= (σ(s−), σ(s−))[λϕ]
= (σ(s−), σ(s−))[χ][νx] (by 1.)

3. Hence, λϕ(s+, σ(s+)) = λσ(s+)[π−1
1 ][λϕ] = λσ(s+)[χ][νx] since by defi-

nition fv(λσ(s+)) ⊆ [s+]− and so fv(λσ(s+))[π−1
1 ] ⊆ ⋃s′∈[s+]−(s′, σ(s′))

4. Finally,
λϕ(σ(s+), σ(s+)) = λ ccA(1, σ(s+))[π−1

2 ][λϕ]
= (0, σ(s+))[π−1

2 ][λϕ]
= λϕ(s+, σ(s+))
= λσ(s+)[χ][νx] (by 3.)

Hence for every s ∈ S+, λ ccA�σ(χ(s)) = λσ(s).

The compact closed structure of CG also extends smoothly to Σ-
strategies. Recall that on plain games and strategies, tensoring only acts
as a renaming: For σ : S → A⊥ ‖ B and τ : T → C⊥ ‖ D,

σ ⊗ τ = γ ◦ (σ ‖ τ) : A⊗ C + // B ⊗D

where γ : (A⊥ ‖ A) ‖ (B⊥ ‖ B) → (A⊥ ‖ B⊥) ‖ (A ‖ B). This renaming
has no impact on the support, S ‖ T , of σ ‖ τ , and it is natural to take the
product λσ ‖ λτ as annotation:

λσ⊗τ = (λσ ‖ λτ ) : (e ∈ (S ‖ T )+) → Tmσ([e]−S‖T )
(0, s) 7→ λσ(s)[ι0]
(1, t) 7→ λτ (t)[ι1]
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One can check that in particular

Proposition 2.3. There is an isomorphism cc A⊗B ' cc A ⊗ cc B.

Proof. By Proposition 1.6 the renaming γ defines an isomorphism from cc A⊗
cc B to cc A⊗B as plain strategies. This immediately lifts to annotations by
unfolding the definition. For example, let a ∈ A+, then λ ccA⊗ ccB(0, (1, a))[γ] =
(0, (0, a))[γ] = (0, (0, a)) = λ ccA⊗B(1, (0, a)) = λ ccA⊗B(γ(0, (1, a))).

For compatibility of the tensor product ⊗ with composition, one could
also check that the isomorphism from proposition 1.7 preserves annotations.
For σ1 : A1

Σ
+ // B1, τ1 : B1

Σ
+ // C1, σ2 : A2

Σ
+ // B2, τ2 : B2

Σ
+ // C2, we expect

(τ1 � σ1)⊗ (τ2 � σ2) ' (τ1 ⊗ τ2)� (σ1 ⊗ σ2)

to behave well. However this would again require to make the above isomor-
phism explicit and a fastidious check on annotations. As for associativity we
leave the proof for chapter 3.

As intuited in the proof of proposition 2.3, the notion of strategy renaming
extends straightforwardly to Σ-strategies:

Definition 2.7. Let f : A ∼= A′ be a game isomorphism and σ : A Σ
+ // B,

then f · σ : A′ + // B together with annotation λσ defines the left renaming
of σ via f , also denoted f · σ : A′ Σ

+ // B.
For g : B ∼= B′, the right renaming σ · g : A Σ

+ // B′ is defined similarly.

Following section 1.3 where the symmetric monoidal structural strategies
cc λ, cc ρ, cc α, cc s of CG are obtained by renaming of base copycat strategies via
the corresponding structural morphisms in E , we use the above definition to
design in turn the corresponding Σ-strategies. The unit and co-unit η and ε
are also defined as in section 1.3, respectively by post-composing annotated
copycat strategies (viewed as event structure morphisms) with the isomor-
phisms λ−1

A⊥‖A and ρ−1
A⊥‖A from E . Saving the congruence proof of ' with

respect to � and ⊗ for the next section (Proposition 2.5 and 2.6) and other
details for Chapter 3, we simply claim that the compact closed structure of
CG is preserved by the addition of Σ-annotations:

Theorem 2.3. Games and Σ-strategies up to isomorphism, together with �,
(1,⊗) and (_)⊥ form a compact closed category Σ-CG.
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2.2 T-strategies
Previous section gives an account of how plain concurrent strategies based on
event structures can be extended with Σ-annotations, that are open terms
associated to their positive events, such that these terms may vary when
composing two strategies together.

These annotations were originally designed to capture existential wit-
nesses in the semantics of first-order proofs. Yet, from a game semantics
perspective, they can simply be viewed as side-information on strategies. It
is then natural to ask for more general information than first order terms. We
now describe how first order term annotations can be turned into annotations
from the free algebra of an (in)equational theory (to be defined) such that
the corresponding equality and/or partial order also reflect on strategies.

2.2.1 T-algebras
Inspired by free-algebras for equational theories, we introduce here a notion
of inequational theories and free-algebras for them. This construction is a
base for having more general annotations than mere terms.

Free algebras. Given a first order signature Σ, an algebra for Σ is a pair
X = (X, J−KX) consisting of a carrier set X together with interpretation
functions JsKX : Xn → X for each s ∈ Σn. By induction this defines a
function JtKX : XV → X for every t ∈ TmΣ(V).

Algebras for Σ define a category Σ-Alg where morphisms are functions
f : X → Y on carrier sets such that for every s ∈ Σn, JsKX(f(x1) . . . f(xn)) =
f((JsKY ) x1 . . . xn). There is an obvious forgetful functor U : Σ-Alg → Set
that retains carrier sets. Given a set V , a Σ-algebra over V , also denoted
(V ,Σ)-algebra, is a is a set morphism h : V → U(A) for A ∈ Σ-Alg.
Lemma 2.4. Given a set V, the identity-on-variable function id : V →
TmΣ(V) is the free Σ-algebra over V – with obvious interpretation functions
– simply written TmΣ(V).

Freeness is a universal property on object similar to the universal property
of the left adjoint of a forgetful functor. For Σ-algebra, it means that any
function of the form h : V → U(A) can be lifted to Σ-algebras through a
unique morphism h∗ : TmΣ(V)→ A such that

TmΣ(V) h∗ // U(A)

Vid
ee

h

;;

commutes in Set. Here h∗ is simply defined by J−KA(h).
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V ` t1 ≡ t2

V ` t2 ≡ t1
sym

V ` t1 ≡ t2 V ` t2 ≡ t3

V ` t1 ≡ t3
trans

t1 ∈ TmΣ(V)
V ` t1 ≡ t1

refl
V ` t1 ≡ t2 V ′ ∪ {x} ` C1 ≡ C2

V ∪ V ′ ` C1[t1/x] ≡ C2[t2/x]
ctxt

Figure 2.3: Congruence rules for ≡E

Equational theories. Following [FH07], a (syntactic) equation over Σ is

V ` t1 ≡ t2

where V is a finite set of variables and t1, t2 ∈ TmΣ(V). An equational theory
then is T = (Σ,E) where E is a set of equations on Σ.

An algebra (X, J−KX) for Σ satisfies an equality V ` t1 ≡ t2 if for every
instance ρ ∈ XV , Jt1KX(ρ) = Jt2KX(ρ). We say that (X, J−KX) is an algebra
for the equational theory T = (Σ,E) (say T-algebra) if it is an algebra for Σ
that satisfies all equalities in E. Similarly, a (V ,T)-algebra is the data of a
T-algebra A ∈ T-Alg together with a function h : V → A.

Free T-algebras over a set V also exist. For t1, t2 ∈ TmΣ(V), define
t1 ≡E t2 iff it is provable using all equalities in E and the congruence rules
depicted on figure 2.3. This generates an equivalence relation on TmΣ(V)
whose equivalence classes are written {t}E ∈ TmΣ(V)/≡E for every t ∈ TmΣ(V).
By definition, the set TmΣ(V)/≡E with interpretation functions JsK(x1 . . . xn) =
{(s) x1 . . . xn}E is a T-algebra, denoted T(V). Besides, there is a direct
embedding id : V → T(V) and for every other (V ,T)-algebra h : V → U(A),
the function

h∗ : T(V) → U(A)
t 7→ JtKA

is a well defined morphism of T-algebras and is the only one that makes the
diagram below commute:

TmΣ(V)/≡E
h∗ // U(A)

Vid
ff

h

;;

As a result we have:

Lemma 2.5. Given a set V, T(V) = (TmΣ(V)/≡E, {−}E) is the free T-algebra
over V.
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Inequational theories. Adapting definitions from those of equational the-
ories, an inequation over a signature Σ is

V ` t1 ≤ t2

where V is a set of variables; and an inequational theory is T = (Σ,E) where
E is a set of inequations on Σ.

To reflect inequations from T into algebras, we now ask the carrier set
of an algebra (X, J−KX) to be equipped with a partial order ≤X such that
every interpretation function JsKX : Xn → X is non-decreasing with respect
to ≤X . Then an algebra satisfies all inequalities in E if for every V ` t1 ≤ t2
and every instance ρ ∈ XV , Jt1KX(ρ) ≤X Jt2KX(ρ).

With that definition, the free T-algebra over a set V still exists; also de-
noted T(V), it is constructed in a similar fashion than for equational theories.
First, the inequalities in E together with the congruence rules on figure 2.3
where ≤ replaces ≡, and sym has been deleted define a preorder ≤E on
TmΣ(V). This induces an equivalence relation

t1 ≡E t2 iff t1 ≤E t2 and t2 ≤E t1

such that ≤E is a partial order on the quotient set TmΣ(X)/≡E, still written
≤E.

Lemma 2.6. Given a set V, T(V) = (TmΣ(X)/≡E, [−]) with partial order ≤E
is the free T-algebra over V.

Proof. This is a routine check similar to what is done for equational theories.
Key points are that the ctxt rule allows for the interpretation function to be
well defined and non-decreasing. The non-decreasing assumption for other
algebras then implies freeness of T(V).

Given an equational theory T = (Σ,E), the inequational theory T′ =
(Σ,E′) with

V ` t1 ≤E′ t2 iff V ` t1 ≡E t2

has the same free algebra than T. In that regards equational theories are
subsumed by inequational theories and we will focus on free algebras for
inequational theories in the coming subsection.

Note also that free T-algebra support substitution: for every substitution
γ : V1 → V2, we have {t}E[γ] = {t[γ]}.
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2.2.2 A category of T-strategies
In their full generality, strategies can be annotated with elements of any free
T-algebra:

Definition 2.8. Let T = (Σ,E) be an inequational theory, a T-strategy is
the data of a plain strategy σ : S + // A together with a T-annotation

λσ : (s ∈ S+)→ T([s]−)

We write σ : A T
+ // B for T-strategies from A to B.

Similarly to plain and Σ-strategies, T-strategies will be considered up
to isomorphism. As in definition 2.4, two T-strategies are isomorphic if
they are isomorphic as plain strategies and their annotations are equal (after
appropriate variable renaming). More generally T-strategies also admit a
partial ordering coherent with equality up to isomorphism:

Definition 2.9. Let σ, σ′ be two T-strategies on the same game, then σ ≤ σ′

iff σ ϕ
' σ′ as plain strategies and ϕ.λσ ≤E λσ′ .

It is direct to check that this defines a partial order such that σ ≤ σ′ and
σ′ ≤ σ implies σ ' σ′.

T-strategies as equivalence classes of Σ-strategies. The intuition be-
hind the definition of T-annotations for strategies is very similar to the one
described for Σ-augmentations. In fact Σ-strategies are just a particular case
of T-strategies where ≡E is reflexivity. But the connection runs deeper: for
T = (Σ,E), one can view T-strategies as equivalence classes of Σ-strategies
under ≡E. This permits T-strategies to inherit from all the categorical struc-
ture of Σ-CG without redefining composition, tensoring or copycat strate-
gies from scratch. The rest of this section makes the connection between
T-strategies and Σ-strategies explicit and details the kind of constructions
we get from it.

The equivalence relation ≡E and partial order ≤E extend to Σ-strategies:

Definition 2.10. Let T = (Σ,E) be an inequational theory and let σ, σ′ be
two Σ-strategies on the same game then σ ≡E σ

′ (respectively σ ≤E σ
′) iff

σ
ϕ
' σ′ as plain strategies and ϕ.λσ ≡E λσ′ (respectively ≤E).

It is again immediate that this defines an equivalence relation and a par-
tial order over the corresponding equivalence classes.
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Proposition 2.4. For A a game, there are inverse order-isomorphisms, (−)
and {−}E, between

- T-strategies over A ordered by ≤, and,

- ≡E-equivalence classes of Σ-strategies over A ordered by ≤E

Proof. Given a Σ-strategy σ : A, it can be turned into a T-strategy {σ}E
having the same plain structure as σ and annotation λ{σ}E(s+) := {λσ(s+)}E.
One can then check that this preserves ∼=E and ≤E.

Conversely, given a T-strategy τ : A, it can be turned into a Σ-strategy τ
by picking a representative for every λτ (s+). This also preserves order and
for every Σ-strategy σ : A and T-strategy τ : A

{σ}E ≡E σ
{
τ
}
E

= τ

Thanks to this correspondence, it is possible to derive a composition and
a tensor product from Σ-strategies to T-strategies.

Definition 2.11. For σ : A T
+ // B, τ : B T

+ // C and ρ : C T
+ // D we set

σ � τ := {σ � τ}E , cc A := { cc A}E and σ ⊗ ρ := {σ ⊗ τ}E
As a result, λτ�σ = (λτ~σ)�(T�S)+ with λτ~σ following the same equations

as in lemma 2.3 and similarly for λσ⊗τ = λσ ‖ λτ
These constructions are well-defined as ≡E and ≤E are congruences with

respect to � and ⊗:

Proposition 2.5. Let σ, σ′ : A Σ
+ // B and τ, τ ′ : B Σ

+ // C such that σ ≤E σ
′

and τ ≤E τ
′, then

σ � τ ≤E σ
′ � τ ′

And similarly with ≡E replacing ≤E.
Proof. We detail only the case where σ ≤E σ

′ and τ = τ ′. The case for σ = σ′

and τ ≤E τ
′ is symmetric and the general case then follows by transitivity.

Congruence for ≡E is a direct consequence.
By definition σ φ

' σ′ such that φ.λσ ≤E λσ′ , and, by proposition 1.2 there
is τ ~ σ T~φ

' τ ~ σ′ such that

T ~ S
Π1
yy Π2 %%

T~φ

,,
T ~ S ′

Π1
yy Π2

%%
S ‖ C

σ‖C --

φ‖C
,,

A ‖ T
A‖τ
''

S ′ ‖ C
σ′‖C
ww

A ‖ T

A‖τqqA ‖ B ‖ C
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By well-founded induction on <τ~σ′ and the characterisation of annotations
for interaction it is then easy to check that

(T ~ φ).λτ~σ ≤ λτ~σ′

the key being that ≤E is a congruence at the level of terms. We detail
the case for [(s′, t)]ϕ′ ∈ T ~ S ′ and s ∈ S+ – other cases are simpler. Let
φ−1([(s′, t)]ϕ′) = [(s, t)]ϕ then

(T ~ φ).λτ~σ([(s, t)]ϕ)

= λτ~σ([(s, t)]ϕ) [T ~ φ]

= λσ(s)[Π−1
1,ϕ] [λτ~σ] [T ~ φ] (Lemma 2.3)

= λσ(s)[Π−1
1,ϕ] [T ~ φ][T ~ φ.λτ~σ]

= λσ(s) [φ][Π−1
1,ϕ′ ] [T ~ φ.λτ~σ] (Above diagram)

≤E λσ′(s′) [Π−1
1,ϕ′ ] [T ~ φ.λτ~σ] (

σ ≤ σ′

+ ctxt
)

≤E λσ′(s′) [Π−1
1,ϕ′ ] [λτ~σ′ ] (

Induction

+ ctxt
)

= λτ~σ′([(s′, t)]ϕ′) (Lemma 2.3)

In the above, the ctxt rule is used several times in a row in order to
apply the corresponding substitutions. This is possible as every of these
substitutions are idempotent so, a variable that has been substituted does
not appear any longer in the term.

Note that although the non-decreasing condition on interpretation func-
tions is not necessary to define a category of T-algebras with free objects –
taking the more restrictive condition V ` t1 ≡E t2 in the ctxt rule –, it is
essential here for � to preserve ≤E. The example below shows how ≤E may
fail to be a congruence, interpreting terms as decreasing functions over reals.
Example 2.2. Consider the following two strategies with decreasing annota-
tions on R:

σ : A + // B

•0 ◦
�   )
�(−2)·◦

≤ σ′ : A + // B

•1 ◦
�   )
�(−1)·◦
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then, their composition with

τ : A⊥

•
_���
◦•

yields
τ � σ : B

�0

6≤ τ � σ′ : B

�−1

Proposition 2.6. Let σ, σ′ : A Σ
+ // B and τ, τ ′ : C Σ

+ // D such that σ ≤E σ
′

and τ ≤E τ ′, then
σ ⊗ τ ≤E σ

′ ⊗ τ ′

And similarly with ≡E replacing ≤E.

Proof. This is fairly straightforward. We focus again on the case where σ φ
' σ′

and τ = τ ′. Then by proposition 1.8, ' is a congruence with respect to ⊗
on plain strategies and using the congruence rules of ≤E

(φ⊗ T ).λσ⊗τ ≤E λσ′⊗τ

For example λσ⊗τ (0, s+)[φ ⊗ T ] = λσ(s+)[ι0][φ ⊗ T ] = λσ(s+)[φ][ι0] ≤E
λσ′(φ(s+))[ι0] = λσ′⊗τ ′(0, φ(s+)) = λσ′⊗τ ′((φ⊗ T )(0, s+)).

These two lemmas ensure that the above constructions are well-defined.
Other structural morphisms are also obtained as the images of structural
morphisms in Σ-CG via {−}E. By theorem 2.3 we have:

Theorem 2.4. Games and T-strategies up to isomorphism, together with �,
(1,⊗) and (_)⊥ form a compact closed category T-CG that is order enriched
over ≤E.

Preserving ≤E is desirable in some cases, in particular in part III of this
thesis where we will compare strategies whose annotations correspond to the
resource analysis of some concurrent programs.
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2.3 Examples of T-strategies
In this section we instantiate the construction T-CG with several examples
of interest. We first build a category of games and strategies annotated
by (functions over) reals that will be used in part III. Then we extend the
definition of T-CG in order for inequational theories to have a many-sorted
signature. This allows us to build a category of games and strategies anno-
tated with morphisms from any cartesian category. We show that the original
category embeds in the resulting category. This last case is first introduced
through the particular case of the category Set.

2.3.1 CGR

This first instantiation of T-CG is a very simple one that results in a category
of concurrent games in which strategies provide a real (or a real function)
together with every positive events they play and such that their composition
composes these annotations.

Definition 2.12. A R-strategy over a game A is a plain strategy σ : S → A
together with an annotation function

λσ(s) : R[s]− → R

for any s ∈ S with positive polarity.

Example 2.3. Let com : run− _ done+ be a game representing the type of
commands of a programming language, let P : com be some command that
takes 3 seconds to execute and delay10 : com + // com be a function that
delays the response of a command by 10 seconds. The interpretation of their
sequential composition in term of R-strategies will be of the form

delay10 � P =

(com⊥0 || com1) � com = com

run1
)qqx

run

_���

run

_���

run0
0

_���
done0

� &&-
donedone0+10

1 done3 done13
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where positive events are annotated by the term-expression corresponding
to their function, e.g. done1 + 10 stands for the function run2,done1 7→
done1 + 10.

Let us show that R-strategies can be described in terms of T-strategies,
for a well chosen T.

Let R be the signature that contains a k-ary symbol for every k-ary real
function:

f ∈ Rk iff f : Rk → R

R is an obvious algebra for R (with interpretation functions JfK = f) and,
given a set of variables V , freeness provides a canonical interpretation of
TmR(V) for every valuation ρ : RV , written J−Kρ : TmR(V) → R . Defining
ER to be the set of equations

V ` t1 = t2 iff ∀ρ : V → R, Jt1Kρ = Jt2Kρ

we have:

Proposition 2.7. The set of R-strategies over a game A is isomorphic to
the set of (R,ER)-strategies over this same game.

Proof. The quotient of TmR by ≡ER induces the following two mappings to
be inverse from each other:

- For σ : S → A a R-strategy define σ : S → A the (R,ER)-strategy
with same plain structure as σ and annotations for every s ∈ S+

the equivalence class of the symbolic representation of λσ(s+), that
is λσ(s+) = {(λσ(s+)) s1 . . . sn}E for s1, . . . , sn the negative variables
associated with [s]−S .

- Conversely, let τ : T → A be a (R,ER)-strategy, then one can define
τ : T → A the R-strategy with same plain structure and interpreted
labels λτ (t+)(ρ : R[t+]−) = Jλτ (t+)Kρ.

Relying on proposition 2.7, one can transport the categorical structure of
(R,ER)-CG onto R-strategies:

Definition 2.13. For σ : A + // B, τ : B + // C and ρ : C + // D three R-
strategies we set

σ � τ := (σ � τ) , cc A := ( cc A) and σ ⊗ ρ := (σ ⊗ τ)
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Corollary 2.2. Games and R-strategies from a compact closed category
called R-CG.

From definition 2.5, 2.11 and 2.13, one can note in particular that R-
annotations for an interaction τ ~ σ : A are described inductively on the
causal history of pairs of synchronised events by

λτ~σ([(s+, t−))]ϕ) = λσ(s) ◦ 〈λτ~σ(e))〉e∈[(s,t)]−ϕ,S
λτ~σ([(s−, t+)]ϕ) = λτ (t) ◦ 〈λτ~σ(e))〉e∈[(s,t)]−ϕ,T

where [(s, t)]−ϕ,S = {e ∈ [(s, t)]ϕ | π1(e) ∈ [s]−}, [(s, t)]−ϕ,T = {e ∈ [(s, t)]ϕ | π2(e) ∈
[t]−} and where projections and variable renaming for matching domains are
kept silent.

Following the same reasoning, one can construct R≥-CG, the category
of games and strategies annotated with non-decreasing real functions. This
category is equipped with a partial order

σ ≤ τ : A iff σ
ϕ
' τ and ∀s ∈ S+, λσ(s) ≤ λτ (ϕ(s))

This is achieved by showing equivalence with strategies over the inequational
theory (R≥,ER≥) defined by

f ∈ (R≥)k iff f : Rk → R is non-decreasing

and
V ` t1 ≤ t2 iff ∀ρ : V → R, Jt1Kρ ≤ Jt2Kρ

2.3.2 CGSet

In the previous example, annotations on strategies are all real functions.
Yet, it might be desirable to have annotations with non uniform domains
and codomains, that is have general set morphisms as annotations. For the
interaction to be possible in this context, Player and Opponent must agree
on the domains and codomain of their annotations. For that, we enrich
games with typing, a new rule that specifies for every event a set in which its
annotations must lay and that must be preserved by players.

Definition 2.14. Let A be a plain game, a Set-typing for A is a mapping
θ : A → Set. We note θa = θ(a) for the type of a ∈ A. This extends to any
subset X ⊆ A by taking θX = ∏

a∈X θa.

Annotations for positive events in a strategy then correspond to functions
that respect this typing:
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Definition 2.15. A Set-strategy over a Set-typed game (A, θ) is a plain
strategy σ : S → A together with an annotation function

λσ : (s ∈ S+)→ Set(θ[s]− , θs)

where θs is a shortcut for θσ(s) for every s ∈ S.

As with R-CG, we aim at defining a category of such games and strategies,
where composition performs composition of the corresponding annotations.
To replay the trick of regarding Set as an equational theory Set, we first allow
signatures to have sorts.

Definition 2.16. A many-sorted signature (S,Σ) is a class of sorts S to-
gether with a set of symbol declarations s ∈ Σ(∏n

i=1 θi, θ) where (∏n
i=1 θi, θ)

is the type scheme of s where n ≥ 0 and θi ∈ S.

The use of classes instead of sets for sorts in the above definition allows
us to consider large signature that would not be well-defined otherwise. A
typical example is the signature Set of sorts S = Set0 and symbols:

f ∈ Set(
n∏
i=1

θi, θ) iff f :
n∏
i=1

θi → θ

Given a set V of sorted variables – i.e. an indexed family of variables
V = {Vθ}θ∈S – the set of sorted terms over V is the indexed family of terms
inductively defined by

Tmθ
Σ(V) := Vθ ∪{

(s) t1 . . . tk | s ∈ Σ(∏k
i=1 θi, θ) and ti ∈ Tmθi

Σ (V)
}

Similarly, algebras can be extended to many-sorted signature by requiring
an indexed family of carrier sets X = {Xθ}θ∈S together with interpretation
functions JsK : ∏n

i=1Xθi → Xθ.
Sections 2.1 and 2.2 can be entirely rephrased in terms of typed terms and

signatures. We can thus replay the equivalence between R-strategies and R-
strategies from section 2.3.1, having instead Set-strategies and Set-strategies,
with Set the many-sorted equational theory of signature Set and equations:

V ` t1 = t2 iff ∀ρ = {ρθ : Vθ → θ}θ∈S , Jt1Kρ = Jt2Kρ

This induces a compact-closed category Set-CG. Moreover the remarks on
R-CG also hold for Set-CG, in particular it is possible to define strategies
annotated with non-decreasing functions on partially ordered sets such that
this induces a partial order enrichment for Set-CG.
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2.3.3 C-CG
Concluding our exploration of the expressiveness of T-CG, we present our
last construction, C-CG. This is a natural generalisation of the previous two
examples where annotations on strategies are morphisms from a cartesian
category C. In this model, as in Set-CG, every event of a game is associated
with an object in C representing the targeted “type of information” associ-
ated to this event. Strategies then provide for every Player move a morphism
in C that describes how this information relates to the one of its negative pre-
decessors. We furthermore show that the category C embeds in the resulting
C-CG.

Let (C,×,1) be a cartesian category, we define C-games and C-strategies
to be:

Definition 2.17. A C-game is the data of a plain game A together with a
C-typing for A, that is, a mapping

θ : A→ C0

where C0 is the class of objects of C. We note θa = θ(a) for the type of a ∈ A.
This extends to any subset X ⊆ A by taking θX = ∏

a∈X θa.

Definition 2.18. A C-strategy over a C-game (A, θ) is the data of a plain
strategy σ : S → A together with a C-annotation for σ that respects θ, that
is, a mapping

λσ : (s ∈ S+)→ C1([s]−, s)
where C1([s]−, s) is a shortcut for the set of morphisms C1(θσ([s]−), θσ(s)).

Example 2.4. Figures 2.4 show the same plain strategy with two different
kinds of annotations: on the left, C = SubstΣ (for Σ ⊇ {f2, g1}) and every
event in A has type {∗}, σ is a SubstΣ-strategy but is in fact equivalent to a
Σ-strategy; on the right, A is typed in Set with θ(•) = R and θ(◦) = N and σ
is annotated with set-functions. In order to not overload the diagrams, both
terms and functions are written as expressions.

Similarly to what we have done for R and Set, we set C to be the many-
sorted equational theory with sorts S = C0 and symbols

f ∈ C(
n∏
i=1

θi, θ) iff f ∈ C1(
n∏
i=1

θi, θ)

Then, one can inductively define a family of interpretation functions

J_KθV : Tmθ
C(V)→ C(

∏
v∈V

θv, θ)
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A ⊗ A −→| A
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Figure 2.4: A Σ-strategy and a Set-strategy

such that JvKθV is the projection map πv : ∏v′∈V θv′ → θv and

J(f) t1 . . . tkKθV = f ◦ 〈JtiKθiV 〉ki=1

with 〈−〉 the tupling operator associated with the cartesian structure of C.
Then, taking equations EC to be

V ` t1 = t2 : θ iff Jt1KθV = Jt2KθV

the category (C,EC)-CG can be used to define composition, identities, and
tensor product for C-strategies.

Definition 2.19. For σ : A + // B, τ : B + // C and ρ : C + // D three C-
strategies we set

σ � τ := Jσ � τK , cc A := J cc AK and σ ⊗ ρ := Jσ ⊗ τK

where J−K and (−) are the set isomorphisms between C-strategies and (C,EC)-
strategies define as in proposition 2.7.

Corollary 2.3. Games and C-strategies form a compact closed category
called C-CG.

From definition 2.5, 2.11 and 2.19, one can again note that for two C-
strategies σ : A C

+ // B, τ : B C
+ // C, the C-annotations for the interaction

τ ~σ are described inductively on the causal history of pairs of synchronised
events by λτ~σ([(s, t)]ϕ) =

1. λσ(s) ◦ 〈λτ~σ(e))〉e∈[(s,t)]−ϕ,S
if s ∈ S+;
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2. λσ(t) ◦ 〈λτ~σ(e))〉e∈[(s,t)]−ϕ,T
if t ∈ T+;

3. idθa otherwise (for τ ~ σ([(s, t)]ϕ) = a).

Interaction and composition of C-strategies thus perform composition of
their annotations as expected.

Reminiscent of Melliès’ construction of the free dialogue category over a
category [Mel12], C-CG can be viewed as a compact closed completion of C
as the latest embeds as a sub-category in C-CG:

Proposition 2.8. There is a functor [−] : C −→ C-CG such that:

- on object: [−] maps A ∈ C0 to the positive singleton C-game
[A] = ◦+

A

- on morphisms, [−] maps f : A→ B to the strategy

[−] : A + // B

◦A
� %%,◦f(◦A)

B

Proof. By definition, [idA] = cc [A], and, from the above remark on annotations
for composition it is immediate to check that [f ◦ g] ' [f ]� [g].

The functor [−] actually has all the data to define a lax monoidal functor
but we have not checked yet whether these satisfy the required coherence
diagram. These data are:

- the unique empty strategy ∅ : 1 + // [1];

- and for every A,B ∈ C0 the natural C-strategies inverse from each
other:

[A] ⊗ [B] + // [A×B]

◦A
� ''.

◦B
� $$,
◦〈◦A,◦B〉A×B

Together with the coherence diagram, it would be interesting to investigate
if the completion [−] could yield a free structure using some restriction on
C-strategies. These two questions are left open for future work.



Chapter 3

Categorical structure of T-CG

This chapter provides details on the proof of the compact closure of Σ-CG,
the model of concurrent games and strategies with annotations as terms
from a first order signature Σ. Following definition 2.11, this also provides a
proof for the more general concurrent games model T-CG enriched over an
inequational theory T. The proof for the compact closure of Σ-CG follows
closely the structure devised in [CCRW17] for plain concurrent strategies.

First, we start by introducing a category of Σ-event structures and to-
tal morphisms between them. Similarly to Σ-strategies, Σ-event structures
are equipped with term-annotations. However, these annotations are more
general: they are defined on configurations rather than on events. This gen-
eralisation allows for the resulting category to have pullbacks. A crucial
feature in the study of Σ-strategies and their interaction.

Second, we extend the framework of Σ-event structures with partial mor-
phisms. This allows us to represent hiding, making explicit the connection
between the interaction of Σ-strategies and their composition. Finally, this
categorical view is used to show that Σ-CG is compact closed. In particular,
this view helps in showing the associativity of composition and the functori-
ality of tensor.

As a conclusion, we discuss the possibility of exploiting the more general
annotations on configurations of Σ-event structures in order to build an other
model of games and annotated strategies in which annotations may actually
affect the plain structure of their interaction. This model however is not
fully developed as this generality was not necessary for the application cases
considered in parts II and III.

3.1 A category of Σ-event structures
Chapter 2 gives a synthetic presentation of annotated strategies where an-
notations are provided with every positive events played in a strategy. Al-
though this definition is handy to work with, it might seem a bit ad-hoc
from an outsider’s perspective. In this section we introduce a more primitive
mathematical structure, Σ-event structure, that are to annotated strategies,



72 3. Categorical structure of T-CG

what plain event structure are to plain strategies. In particular they form a
category with pullbacks. Hiding is however subject to restriction.

3.1.1 Σ-event structures
Although more primitive, Σ-event structures are defined following the same
kind of ideas as Σ-strategies: every configuration carries additional informa-
tion (terms) about its events and this information can be made more specific
with further extensions.

Definition 3.1. Let Σ be a first order signature, a Σ-event structure is a
plain event structure E together with an annotation λE that is an indexed
family of idempotent substitutions

{λxE : x Σ→ x}x∈C (E)

such that (knowledge preservation) for every x, x′ ∈ C (E)

x ⊆ x′ =⇒ λxE � (λx′E )�x

Idempotence of annotation is for sanity: if the variable e ∈ x belongs
to fv(λx(e)) for some e′ ∈ x then e represents the unknown information
associated with e, having λx(e) 6= e would then not make sense. Similarly,
knowledge preservation ensures that the piece of information attached to an
event is coherent throughout extensions: only unknown or new variables can
be made precise.

Lemma 3.1. For (E, λE) a Σ-event structure, knowledge preservation is
equivalent to

x ⊆ x′ ∈ C (E) =⇒ λx
′

E �x = λxE[λx′E �x]

Proof. Right to left implication is immediate; left to right implication is a
consequence of lemma 2.1 on idempotent substitutions. In particular, if ι
denotes the inclusion x ↪→ x′ then

x′
λx
′
E

// x′
ι //

ι   

x

x
λxE

??

Morphisms of event structures extend to Σ-annotations. In particular, for
f : E → E a morphism of event structures, we make use of the fact that for
every configuration x ∈ C (E), f defines an isomorphism f : x ' f(x) (local
injectivity) and can thus be used to transport (and compare) annotations:
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F = •d
_���
◦c

f
��

E = •• ◦c

G = ••
_���
◦(g)•

f
��

E = •• ◦c

Figure 3.1: An example and a non-example of morphism of Σ-event structures

Definition 3.2. Let (E, λE), (F, λF ) be two Σ-event structures, f : E → F is
a morphism of Σ-event structures (Σ-morphism for short) if it is a morphism
of event structures and for every x ∈ C (E) (knowledge preservation)

λ
f(x)
F � f.λxE

Figure 3.1 shows two examples of the same morphism of event structures,
extended with different annotations for the event structures involved. These
annotations define valid Σ-event structures, however only the left example
defines a valid morphism of Σ-event structures. In particular, the right exam-
ple fails the above definition on the configuration x = {•, ◦}: λxG(◦) = (g)•
cannot be obtained as an instance of λxE(◦) = c.

Generally speaking, a morphism of plain event structures f : E → F can
be think as “E is a specialisation of F”; the last condition on Σ-morphisms
follows this idea: through renaming by f , terms on E’s configurations are
instances of their F counterparts. In particular

Lemma 3.2. For (E, λE), (F, λF ) two Σ-event structures and f : E → F a
plain morphism between them, then f is Σ-morphism iff

λ
f(x)
F [f.λxE] = f.λxE

Proof. Direct consequence of lemma 2.1

Parallel composition of event structures extends straightforwardly to Σ-
event structures:

Definition 3.3. Let (E, λE), (F, λF ) be two Σ-event structures, E ‖ F is
the plain E ‖ F event structure together with

λ
xE ||xF
E‖F := λxEE ||λ

xF
F

Like in E , the empty event structure is the unit for parallel composition,
event structure morphisms compose and identities are neutral for composi-
tion, hence
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Proposition 3.1. Σ-event structures and their morphisms form a monoidal
category (EΣ, ‖, ∅).

Categories E and EΣ are related to each other via two functors

E
F

''
EΣ

G

ff

where F : E → EΣ is the functor that maps an event structure E ∈ E to
the same event structure E ∈ EΣ with annotation λ(x ∈ C (E)) = idx –
morphisms follow –, and G : EΣ → E is the forgetful functor from EΣ to
E . These two functors preserve the monoidal structure of both categories,
however they do not define an adjunction: in the next section we show that
G does not preserve pullbacks.

3.1.2 Pullbacks
Similarly to the construction of plain concurrent strategies presented in chap-
ter 1, Σ-strategies can be viewed as certain Σ-morphisms, this is useful in
order to interpret interaction of strategies as pullbacks and thus inherit all
good properties of pullbacks such as associativity. In this section we show
that EΣ has pullbacks.

Via G, morphisms of Σ-event structures define morphisms of event struc-
tures, so the plain structure of the pullback of two Σ-morphisms embeds
in the pullback of the corresponding plain morphisms. In particular, for
σ : S → A and τ : T → A, a configuration in σ ∧ τ must be a secured
bijection. But, given such bijection ϕ : xS ' xT what should then be its an-
notation? For Π1 and Π2 to define Σ-morphisms, this has to be an instance
of both π−1

1 .λxSS and π−1
2 .λxTT . In particular, because of idempotence, it must

be a solution to the unification problem

Uϕ :=
{
λxSS (s)[π−1

1 ] =̇ λxTT (t)[π−1
2 ]
}

(s,t)∈ϕ

Configurations in S ∧ T must thus correspond to Σ-secured bijections, that
are, secured bijections whose corresponding unification problem have a solu-
tion. We write BΣ-sec

σ,τ for the set of Σ-secured bijections. Because of knowl-
edge preservation we have

Lemma 3.3. If ϕ ⊆ ϕ′ are two secured bijections and ϕ′ is Σ-secured, then
ϕ is also Σ-secured.
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Proof. Let ϕ : xS ' xT , ϕ′ : x′S ' x′T and let µ : ϕ′ Σ→ ϕ′ be a unifier
for Uϕ′ , then, using lemma 3.1, it is simple to see that ((π−1

1 .λ
x′S
S ) ◦ µ)�ϕ

(= ((π−1
2 .λ

x′T
T ) ◦ µ)�ϕ) is a unifier for Uϕ. Indeed, for every (s, t) ∈ ϕ:

λxSS (s)[π−1
1 ][(π−1

1 .λ
x′S
S ◦ µ)�ϕ] = λxSS (s)[λx

′
S
S�xS ][π−1

1 ][µ�ϕ]
= λ

x′S
S (s)[π−1

1 ][µ�ϕ]
= λ

x′T
T (t)[π−1

2 ][µ�ϕ]
= λxTT (t)[λx

′
T
T �xT ][π−1

2 ][µ�ϕ]
= λxTT (t)[π−1

2 ][(π−1
2 .λ

x′T
T ◦ µ)�ϕ]

Lemma 3.3 entails that BΣ-sec
σ,τ is closed under inclusion. Inspired by the

pullback construction for plain event structures (cf section 1.2.2), we now
define the causal interaction of two Σ-morphisms:

Definition 3.4. Let σ : S → A, τ : T → A be two maps of Σ-events
structures, their causal interaction S ∧Σ T is the event structure defined by:

- Events: the prime Σ-secured bijections of BΣ-sec
σ,τ

- Causality: inclusion of the graphs of the Σ-secured bijections,

- Consistency: X is a consistent set of prime Σ-secured bijections if the
union of their graphs describes a Σ-secured bijection (i.e. (⋃ϕ∈X ϕ) ∈
BΣ-sec
σ,τ ).

Checking that S∧ΣT defines a proper event structure is routine, especially
using that BΣ-sec

σ,τ is down-closed. Moreover, there is an obvious inclusion of
S∧ΣT into S∧T at the level of plain event structures. Hence the projections
Π1 : S ∧Σ T → S and Π2 : S ∧Σ T → T define as for S ∧T make the diamond
diagram commutes in E .

S ∧Σ TΠ1

zz
Π2

%%
S

σ %%

T

τyy
A

Given ϕ : xS ' xT ∈ BΣ-sec
σ,τ , we denote λϕ : ϕ Σ→ ϕ the idempotent

maximum substitution for π−1
1 .λxSS and π−1

2 .λxTT described in corollary 2.1,
we have:

Lemma 3.4. Let ϕ ⊆ ϕ′ ∈ BΣ-sec
σ,τ , then λϕ[λϕ

′

�ϕ] = λϕ
′

�ϕ.
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Proof. Let ϕ : xS ' xT and ϕ′ : x′S ' x′T such that x′S ⊆ xS and x′T ⊆ xT .
Then, by definition, λϕ

′

�ϕ subsumes (π−1
1 .λxSS )�x′S and (π−1

2 .λxTT )�x′T so it also
subsumes π−1

1 .λ
x′S
S and π−1

2 .λ
x′T
T . Hence, λϕ′ � λϕ

′

�ϕ by minimality of λϕ′ .
Hence, by lemma 2.1, λϕ[λϕ

′

�ϕ] = λϕ
′

�ϕ.

As in the plain case, there is a strong correspondence between configura-
tions of S ∧Σ T and Σ-secured bijections.

Lemma 3.5. For any configuration x ∈ C (S ∧Σ T ), x defines a Σ-secured
bijection ϕx = ∪x : Π1x ' Π2x. Moreover, the assignment x 7→ ϕx defines an
order-isomorphism C (S∧ΣT ) ∼= BΣ-sec

σ,τ (with both sets ordered by inclusion),
and there is a family of order-isomorphisms:

νx : x ' ϕx
[(s, t)]x 7→ (s, t)

that is natural in x.

Proof. This follows the exact same reasoning as for the plain case. We refer
the reader to lemma 1.5.

This lemma together with lemma 3.4 shows that the family of substi-
tutions {νx.λϕx}x∈C (S∧T ) is an appropriate annotation for S ∧Σ T . In fact,
this annotation turns the causal interaction S∧ΣT together with projections
Π1,Π2 into a pullback in EΣ:

Proposition 3.2. Let σ : S → A, τ : T → A be two Σ-morphisms,
then the interaction (S ∧Σ T,Π1,Π2) together with the family of annotations
{νx.λϕx}x∈C (S∧T ) defines a pullback for σ and τ .

Proof. First note that the diamond diagram pictured above still holds in EΣ.
Let x ∈ C (S ∧Σ T ), then by corollary 2.1 π1.λ

ϕx = λxSS ◦ π1.λ
ϕx and by

definition Π1�x = π1 ◦ νx. By lemma 3.2, this shows that Π1 is knowledge
preserving hence is a Σ-morphism. The case is similar for Π2.

Suppose now that (X,α, β) also satisfies the diamond diagram in EΣ.
Then, we show that one can reuse the unique morphism of plain event struc-
tures 〈α, β〉 : X → S ∧T obtained via the pullback property of S ∧T in E to
define a morphism of Σ-event structures that makes the following diagram
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commutes:
X

α

��

β

��

〈α,β〉
��

S ∧Σ T
Π1

yy

Π2

%%
S

σ
%%

T

τ
yy

A

Let x ∈ C (X) then 〈α, β〉(x) ∈ C (S ∧ T ) corresponds to the secured
bijection ϕx : α(x) ' β(x), and, by lemma 3.2

α−1
x .λxSS ◦ λxX = λxX = β−1

x .λxTT ◦ λxX

Hence 〈α, β〉.λxX subsumes (π−1
1 .λ

α(x)
S ) and (π−1

2 .λ
α(x)
T ) so, by minimality of

λϕx , we have λϕx � 〈α, β〉.λxX . Uniqueness holds from uniqueness in E .

From the existence of pullbacks, we define the interaction between any
two Σ-morphisms σ : A ‖ B, τ : B ‖ C sharing a common component B by
τ ~ σ = (σ ‖ C) ∧Σ (A ‖ τ). As in the plain case, configurations of T ~ S
are fully described by pairs of configurations xT ~ xS such that xS ∈ C (S),
xT ∈ C (T ), σ(xS) = xA ‖ xB, τ(xT ) = xB ‖ xC and ϕ : xS ‖ xC ' xA ‖ xT
is a Σ-secured bijection.

3.1.3 Partial morphisms and projections
Another crucial feature when building a framework for games and strategies
is the ability to forget (or hide) part of the object under study. In E this
is simply done by means of projections. Projections however are not always
defined in EΣ: let E ∈ EΣ and V ⊆ E, then it may be that for x ∈ C (E), the
restriction of λxE to x∩ V still has free variables in E − V . We say that V is
a Σ-independent subset of E if for every x ∈ C (E), FV(λxE�V ) ⊆ V .

Definition 3.5. Let E be a Σ-event structure and V be a Σ-independent
subset of E, the projection of E on V , written E ↓ V , is defined by causal
E ↓ V together with {λ[x]E

E�V }x∈E↓V .

This definition may seem a bit ad-hoc, it will be simplified in the next
section when focusing on morphisms actually defining Σ-strategies. For the
moment it is necessary to introduce the category of Σ-event structures and
partial morphisms between them, and restate a useful lemma describing how
projection and interaction commute, namely a zipping lemma, already known
in the plain case [CCRW17].
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The category EΣ,⊥ Our category of partial Σ-morphisms is built on the
category of partial morphisms of event structures described in [CCRW17].
We first recall:

Definition 3.6. A partial morphism of event structures is a partial function
f : E ⇀ F such that

(i) preserves configurations: ∀x ∈ C (E), f(x) ∈ C (E);

(ii) is locally injective: ∀e, e′ ∈ x ∈ C (E), if f(e) = f(e′) (both defined)
then e = e′.

For partial Σ-morphisms, changes with definition 3.2 is slightly bigger
since knowledge preservation is not defined without Σ-independence:

Definition 3.7. A partial Σ-morphism is a partial morphism of event struc-
tures f : E ⇀ F such that the domain V ⊆ E of f is Σ-independent and for
all x ∈ C (E), λf(x)

F � f.λxE.

Note that for every Σ-event structure E and every of its Σ-independent
subset V ⊆ E, there is a partial Σ-morphism h : E ⇀ E ↓ V that is defined
as the identity on V .

Proposition 3.3. Σ-event structures and their partial morphisms define a
monoidal category (EΣ,⊥, ‖, ∅).

Proof. Very similar to EΣ, it is routine to check that partial morphisms of
event structures compose and have identities as neutrals. The monoidal
structure of (‖, ∅) is orthogonal to having partial maps, except additionally,
∅ becomes terminal.

Total Σ-morphisms still define morphisms in EΣ,⊥. Partial and total Σ-
morphisms then relate in the following way:

Proposition 3.4. Let f : E ⇀ F be a partial Σ-morphism with domain
V ⊆ E. Then f decomposes into f�V ◦ h : E ⇀ E ↓ V → F and for every
other partial-total factorisation h ◦ f ′ : E ⇀ X → G of f , there exists a
unique total map h′ : E ↓ V → X such that

E

h
�

h

#
f

�

E ↓ V
f�V
��

h′ // X

f ′{{
G
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We say that h has the partial-total universal property and call it a hiding
map.

Proof. All f, h, h have domain V , so following the definition of h, h′ = h�V is
the only possible morphism that makes the above diagram commutes.

Although pullbacks are not defined in general for partial Σ-morphisms,
EΣ,⊥ inherits the ones from EΣ:

Proposition 3.5. Pullbacks of total Σ-morphisms still define pullbacks in
EΣ,⊥.

Proof. This observation also holds in the plain case and a detailed proof for
it is given in [CCRW17]. As this proof only relies on the universal property
of pullbacks we do not reproduce it her but summarise it by the following
diagram – where V denotes the domain of α and β.

X
h�

α

�

β

�

X ↓ V

α′





β′

��

g
��
P
∨

|| ##
A

$$

B

zz
C

Uniqueness follows by uniqueness of g and the universal property of h.

Zipping lemma The rest of this section is dedicated to prove the fol-
lowing zipping lemma, in fact it is almost a restatement of what is done
in [CCRW17].

Lemma 3.6 (Zipping Lemma). Let σ : S → A||B||C, σ′ : S ′ → A||C and
ρ : U → C||D be Σ-morphisms and let h : S ⇀ S ′ be a hiding map making
the following diagram commutes:

S
h /

σ ��

S ′

σ′��
A ‖ B ‖ C A‖⊥‖C/ A ‖ C

Then, there is a Σ-morphism U ~ h : U ~ S ⇀ U ~ S ′ that is a hiding map.
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The existence of U ~ h is immediate following the pullback property of
U ~ S and proposition 3.5.

U ~ S
∨

xx ''

U~h / U ~ S ′
∨

yy %%
S||D

σ||D ''

h||D ,
A||B||U

A||B||ρww

A||⊥||U +
S ′||D

σ′||D %%

A||U
A||ρyy

A||B||C||D
A||⊥||C||D

/ A||C||D

We show that it is a hiding morphism using the following characterisation
of partial-total universal property:
Proposition 3.6. Let f : E ⇀ F be a partial Σ-morphism defined on V ⊂ E,
the followings assertions are equivalent:
(i) f has the partial-total universal property

(ii) There exists an isomorphism ϕ : E ↓ V ∼= F such that ϕ ◦ hV = f (in
fact ϕ = f�V )

(iii) f has a knowledge-preserving hiding witness, that is, a monotonic func-
tion witf : C (F )→ C (E) such that for every x ∈ C (E), witf (f(x)) ⊆
x and, for every y ∈ C (F ), f(witf (y)) = y and f.λwitf (y)

E � λyF .
Proof. Removing the knowledge preserving condition in (iii) the same propo-
sition holds in E⊥. Our proof is thus heavily inspired from the one
in [CCRW17].

(i) ⇔ (ii). From right to left, by proposition 3.4, hV has partial-total
universal which transports through ϕ. From left to right, both hV : E ⇀ E ↓
V and f : E ⇀ F have partial-total universal property, yielding the desired
isomorphism.

(i) ⇒ (iii). Using the above equivalence, it is enough to show that this
implication holds for hV : E ⇀ E ↓ V . For x ∈ C (E ↓ V ), define wit(x) =
[x]E ∈ C (E). Clearly, h(wit(x)) = [x] ∩ V = x and wit(h(x)) = [x ∩ V ] ⊆ x
as required. It is monotonic and it preserves terms by definition.

(iii) ⇒ (ii). Following lemma 1.4 we construct an order-isomorphism on
configurations:

p : C (E ↓ V ) → C (F )
x 7→ f([x]E)

q : C (F ) → C (E ↓ V )
y 7→ wit(y) ∩ V
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It is clear by definition that these maps are monotonic, we need to prove that
they are inverse of each other. For one direction, let y ∈ C (F ), then wit(y)
is down-closed in E (since wit(y) ∈ C (E)) and thus can only differ from
[wit(y) ∩ V ]E by events not in V . Hence, f([wit(y) ∩ V ]E) = f(wit(y)) = y,
i.e. p ◦ q(y) = y.

For the other direction, we note first that if x ∈ C (E) has all its maximal
events in V , then wit(f(x)) = x. Indeed, wit(f(x)) ⊆ x by hypothesis
and both sides map to f(x) via f , so, by local injectivity, wit(f(x)) ∩ V =
x ∩ V . But x = [x ∩ V ]E since its maximal elements are visible. So, putting
everything together:

x = [x ∩ V ] = [wit(f(x)) ∩ V ] ⊆ wit(f(x)) ⊆ x

Now, let x ∈ C (E ↓ V ), then, by definition, [x] has its maximal events in V ,
so wit(f([x])) = [x], and so q ◦ p(x) = wit(f([x])) ∩ V = [x] ∩ V = x. This
concludes the other direction.

By Lemma 1.4, p and q yield isomorphisms p̂ = f�V : E ↓ V → F and
q̂ : F → E ↓ V in E . It is routine to check that these isomorphisms belong
to EΣ as well:

- let x ∈ C (E ↓ V ), then λp̂(x)
F = λ

f([x]
F � f.λEx = f�V .λ

x
E↓V = p̂.λxE↓V .

- let y ∈ C (F ) then p̂.λq̂(y)
E↓V = f�V .λ

wit(y)∩V
E↓V = f.λ

wit(y)
E � λyF , hence, by

renaming, λq̂(y)
E↓V � q̂.λyF .

Using the above characterisation, we conclude the proof of the zipping
lemma by constructing a term-preserving hiding witness for U ~h, using the
hiding witness of h.

Lemma 3.7. U ~ h has a knowledge-preserving hiding witness:

wit : C (U ~ S ′) → C (U ~ S)
xU ~ xS′ 7→ xU ~ with(xS′)

Proof. From the zipping lemma in [CCRW17], we know that the above map
defines a hiding witness so we just have to check that it is knowledge pre-
serving.

For that we prove the following: given xU ~xS′ ∈ C (U ~S ′), λxU~xS′U~S′ can
be used to construct a unifier µ for Uϕxu~wit(xS′ )

such that (U~h).µ = λ
xU~xS′
U~S′ .

Hence, by lemma 2.2 and the minimality of λxu~wit(xS′ )
U~S we have λxu~wit(xS′ )

U~S �
µ and so (U ~ h).λxu~wit(xS′ )

U~S � (U ~ h).µ = λ
xu~xS′
U~S′ .
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Let us construct µ. First note that UxU~wit(xS′ ) can be split into
UxU~xS′ [(U ~ h)−1] and {λwit(xS′ )S (s)[π−1

1 ] =̇ λxBB (σ(s))[π−1
2 ]}s∈wit(xS′ )B , where

wit(xS′)B is the set of events in xS′ that maps to B via σ and σ(wit(xS′)B) =
xB. These two sub-problems are independently solved by (U ~ h)−1.λ

xu~xS′
U~S′

and π−1
1 .λ

wit(xS′ )
S�wit(xS′ )B

. Hence, taking their composition gives a unifier for the
general problem UxU~wit(xS′ ) and, by definition, its projection via U ~ h is
equal to λxU~xS′U~S′ .

Besides the zipping lemma, proposition 3.6 leads to a couple of useful
corollaries.

Corollary 3.1. Let h1 : E1 ⇀ E2 and h2 : E2 ⇀ E3 be two hiding morphisms,
then h2 ◦ h1 : E1 ⇀ E3 is a hiding map.

Proof. By composition of knowledge-preserving hiding witnesses from char-
acterisation (iii) of hiding morphisms.

Corollary 3.2. Let h1 : E1 ⇀ E2 and h2 : E3 ⇀ E4 be two hiding morphisms,
then h1 ‖ h2 : E1 ‖ E3 ⇀ E2 ‖ E4 is a hiding map.

Proof. By composition of knowledge-preserving hiding witnesses from char-
acterisation (iii) of hiding morphisms.

3.2 Compact closed structure of Σ-CG
The previous section introduces EΣ,⊥, a categorical framework to talk about
interaction and projection of morphisms of event structures with annotations.
Similarly to what is done in [CCRW17] for the plain case, we now show
that certain total morphisms of EΣ,⊥ can be viewed as strategies and that
pullback and hiding in EΣ,⊥ provide a basis for studying properties of their
composition. This helps concluding on the compact closed structure of Σ-CG.

3.2.1 From Σ-morphisms to Σ-strategies
Games and Σ-strategies as defined in chapter 2.1 can be viewed as particular
Σ-event structures and morphisms. To characterize them inside Σ-ES we
introduce polarities back.

Definition 3.8. A Σ-event structure with polarities is a Σ-event structure
(E, λE) together with a polarity function polE : E → {+,−}.

The dual operator (−)⊥ is still defined by reversing polarities. In fact,
adding polarities is orthogonal to adding annotations and it is direct to show:
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Proposition 3.7. Σ-event structure with polarities and their polarity pre-
serving Σ-morphisms define a category EPΣ, equipped with a monoidal struc-
ture (‖, ∅).

The same holds with partial morphisms, yielding a category EPΣ,⊥.
The functors F and G between E and EΣ, described on page 74, are still

define for EP and EPΣ (functors now preserve polarities). We call games in
EPΣ the images of EP via F .

As mentioned in chapter 1, morphisms of the form σ : S → A⊥ ‖ B in EP
can be viewed as pre-strategies, then denoted σ : A + // B. This is because
one can define composition � on them – as interaction followed by projection.
Having defined interactions and projections in EPΣ it is tempting to view
Σ-morphisms of that form as pre-strategies as well. Yet, composition in that
case may not always be defined as projection in EPΣ is subject to restriction.
Using polarities we give a criterion that restricts the shape of Σ-morphisms
and helps recovering a notion of pre-strategies.
Definition 3.9. A morphism of Σ-event structure with polarities σ : S → A
is productive if for every x ∈ C (S), fv(x) ⊆ x−.

This definition is based on the observation that splitting the set of vari-
ables that can be used freely between σ and τ is enough to avoid unspecified
variables from the common game at the end of interaction. A natural and
homogeneous way to rule this split between σ and τ is to specify this splitting
it using their common game, for example exploiting polarities.
Proposition 3.8. If σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C are productive
Σ-morphisms, then their composition τ �σ : T �S → A⊥ ‖ C is well-defined
in EPΣ.
Proof. One needs to check that the set of visible events in T ~ S is Σ-
independent. This is a consequence of the fact that for ϕ : xS ‖ xC ' xA ‖ xT ,
a Σ-secured bijection, π−1

1 λ
xS‖xC
S‖C [λϕ] = λϕ = π−1

2 λ
xA‖xT
A‖T [λϕ] (corollary 2.1)

hence

fv(λϕ) ⊆ π−1
1 (fv(λxSS )) ∩ π−1

2 (fv(λxTT ))
∪ π−1

1 (fv(λxSS )) ∩ π−1
2 (fv(λxAA ))

∪ π−1
1 (fv(λxCC )) ∩ π−1

2 (fv(λxTT ))

By productivity, the first intersection is empty and by definition of Σ-
morphisms the last two are respectively included in π−1

2 (A⊥) and π−1
1 (C),

concluding that
fv(λϕ) ⊆ τ � σ(A||C)
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Other constructions on pre-strategies in EP are defined in EPΣ. Reusing
notation, the tensor product of two games is A ⊗ B = A ‖ B and for two
Σ-morphisms σ : A + // B, τ : C + // D

σ ⊗ τ = γ ◦ (σ ‖ ρ)

with γ : A⊥ ‖ C ‖ B⊥ ‖ D → A⊥ ‖ B⊥ ‖ C ‖ D the corresponding
isomorphism in EPΣ. Following definitions 1.14 and 1.9 from chapter 1 one
similarly define left and right renaming via Σ-isomorphisms as well as lifting
and co-lifting of Σ-isomorphisms. Note that these constructions preserve
productivity.

Finally we extend the definition for isomorphic pre-strategies (defini-
tion 1.8), we have:

Definition 3.10. Two parallel Σ-morphisms σ1, σ2 : A + // B are isomorphic
if there exists an isomorphism of Σ-event structures that makes the triangle
below commutes

S1

σ1 ##

φ

))
S2

σ2{{
A⊥ ‖ B

Note that in general, for x ∈ C (S1), φ.λxS 6= λ
ϕ(x)
S2 ; these two annotations

are only α-equivalent. However, when restricted to the Σ-morphisms that
will represent the Σ-strategies in Σ-ES, we will get this equality back, thus
matching definition 2.4

Having a notion of composition, tensor product and isomorphism for Σ-
pre-strategies – that are productive Σ-morphisms – we now bridge the defi-
nition of Σ-strategies given in chapter 2.1 with the one of Σ-morphisms.

Definition 3.11. Let (σ, λσ) : A Σ
+ // B be a Σ-strategy of support S, then

σ defines a Σ-pre-strategy

σλ : (S, λσ)→ F(A⊥ ‖ B)

with λσ viewed as a family of annotations, defined for x ∈ C (S) by λxσ�x+ =
λσ�x+ and λxσ�x− = idx− .

Note that for (σ, λσ) a Σ-strategy, λσ(s) = λ
[s]
σλ(s) and for every x ⊆ x′ ∈

C (S), λxσ = λxσ�x.
Σ-strategies and their Σ-morphism counterparts really are two different

views of the same object (a meager view and a fat view), in particular:
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Proposition 3.9. Let σ, σ′ : A Σ
+ // B, τ : B Σ

+ // C, ρ : D + // E be Σ-
strategies, let f : B ∼= B′ be a game isomorphism then

1. (σ � τ)λ = σλ � τλ;

2. φ : σ1 ' σ2 iff φ : σλ1 ' σλ2 ;

3. σλ ⊗ ρλ = (σ ⊗ ρ)λr;

4. (f · τ)λ = f · τλ.

Proof. 1. Consider a secured bijection xT ~xS ∈ C (T ~S) then for every
(s, t) ∈ xT ~ xS its corresponding equation in UxT~xS is of the form

λσ(s)[π−1
1 ] =̇ s[π−1

1 ] if s ∈ x+
S

t[π−1
2 ] =̇ λτ (t)[π−1

2 ] if t ∈ x+
T

(s, t) =̇ (s, t) otherwise

By theorem 2.2, UxT~xS has a solution and λτ~σ as described in
lemma 2.3 is exactly the maximum substitution from corollary 2.1.
Hence the equality.

2. Left to right implication is immediate from definition 2.4 as φ.λσ1 = λσ2 .
Let’s focus on its contrapositive. Condition for isomorphisms in EPΣ
are more lax than in CG, yet the specificities of Σ-strategy images
make the two definitions equivalent. Let s1 ∈ S1 and s2 = φ(s1), then
from lemma 3.1 φ.λ

[s1]
σλ1

= λ
[s2]
σλ2

[φ.λ[s1]
σλ1

]. By definition fv(λ[s2]
σλ2

) ⊆ [s]−

and (φ.λ[s1]
σλ1

)�[s2]− = id[s2]− hence the previous equality simplifies to
φ.λ

[s1]
σλ1

= λ
[s2]
σλ2

as desired.

3,4. This is immediate by definition of ⊗ and · in both Σ-CG and EPΣ.

3.2.2 Σ-CG: a compact closed category
We use the above correspondence to prove associativity for composition, func-
toriality of tensor product on Σ-strategies as well as the annotated version
of proposition 3.12 relating renaming with composition. Following the proof
scheme described in section 1.3 for the plain case, this completes proposi-
tions 2.2 and 2.3 in showing that CGΣ is a symmetric monoidal category.
Following [CCRW17], our proof technique relies on the pullback and hiding
universal properties of interaction and projection in EPΣ,⊥.
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Associativity of � Given three Σ-pre-strategies σ : S → A⊥ ‖ B, τ :
T → B⊥ ‖ C, ρ : U → C⊥ ‖ D, by pullback property, their interaction is
associative:

U ~ (T ~ S)
∨

{{

��

oo aσ,τ,ρ

∼
// (U ~ T )~ S

∨

��

##

(T ~ S) ‖ D
∨

{{ 



(U ~ T )~ S
∨

$$��
(S ‖ C) ‖ D

(σ‖C)‖D ))

rr ,,
(A ‖ T ) ‖ D

(A‖τ)‖D
��

ss ++
(A ‖ B) ‖ U

(A‖B)‖ρuu

rr ,,
S ‖ (C ‖ D)

σ‖(C‖D) ))

A ‖ (T ‖ D)
A‖(τ‖D)
��

A ‖ (B ‖ U)

A‖(B‖ρ)uu
(A ‖ B ‖ C) ‖ D A ‖ (B ‖ C ‖ D)

The corresponding isomorphism of Σ-event structure is denoted aσ,τ,ρ : U ~
(T ~ S) ∼= (U ~ T )~ S. Because of the partial-total universal properties of
projection this isomorphism projects down to composition.

Proposition 3.10. Let σ : S → A⊥||B, τ : T → B⊥||C, ρ : U → C⊥||D be
three Σ-pre-strategies then ρ� (τ � σ) ' (ρ� τ)� σ.

Proof. Instantiating the zipping lemma (3.6) with hiding maps from the
composition of Σ-pre-strategies, we first define the following two partial Σ-
morphisms:

h(σ,τ),ρ : U ~ (T ~ S) U~h
⇀ U ~ (T � S) h

⇀ U � (T � S)

hσ,(τ,ρ) : (U ~ T )~ S h~S
⇀ (U � T )~ S h

⇀ (U � T )� S

By composition of hiding maps (lemma 3.1), these two morphisms are hiding
maps. Moreover, ignoring the dotted arrow, they make the diagram below
to commute:

U ~ (T ~ S) aσ,τ,ρ

∼
//

hσ,(τ,ρ) �

(U ~ T )~ S
h(σ,τ),ρ�

U � (T � S) ασ,τ,ρ

∼
//

ρ�(τ�σ) ((

(U � T )� S
(ρ�τ)�σvv

A ‖ D

Thus, by the partial-total universal property there exists ασ,τ,ρ : U�(T�S) ∼=
(U � T )� S that makes the above diagram commutes.

Viewing Σ-strategies through their Σ-morphisms counterparts as de-
scribed in proposition 3.9, the proposition above provides a proof of the
associativity of composition for Σ-strategies as stated in proposition 2.1.
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Functoriality of ⊗. In proposition 2.3 we proved that the tensor operation
on Σ-strategies preserves identities. We now complete the proof that it is a
bifunctor, showing that it preserves composition as well. Again, this relies
on the composition of Σ-strategies being described as a pullback plus hiding
in EΣ,⊥.

Proposition 3.11. Let

σ1 : S1 → A⊥1 ‖ B1 τ1 : T1 → B⊥1 ‖ C1
σ2 : S2 → A⊥2 ‖ B2 τ2 : T2 → B⊥2 ‖ C2

be Σ-pre-strategies, then,

(τ1 � σ1)⊗ (τ2 � σ2) ' (τ1 ⊗ τ2)� (σ1 ⊗ σ2)

Proof. This follows the same proof scheme as the one for the plain case found
in Proposition 5.2 of [CCRW17].

First note that the parallel composition of pullbacks still defines a pull-
back. Hence, by pullback property there is an isomorphism (T1 ~ S1) ‖
(T2 ~ S2) ∼= (T1 ‖ T2)~ (S1 ‖ S2) such that the following diagram commutes
(the isomorphism is the doted arrow)

(T1 ~ S1) ‖ (T2 ~ S2)
h‖h

u
(τ1~σ2)‖(τ1~σ2)
��

mm

##
(T1 � S1) ‖ (T2 � S2)

(τ1�σ2)‖(τ1�σ2)
��

(A1 ‖ B1 ‖ C1) ‖ (A2 ‖ B2 ‖ C2)
γ

��

h

u

(T1 ‖ T2)~ (S1 ‖ S2)

(τ1⊗τ2)~(σ1⊗σ2)
ss

h

�
(A1 ‖ C1) ‖ (A2 ‖ C2)

γ ++

(A1 ‖ A2) ‖ (B1 ‖ B2) ‖ (C1 ‖ C2)
h

�

(T1 ‖ T2)� (S1 ‖ S2)

(τ1⊗τ2)�(σ1⊗σ2)
ss

(A1 ‖ A2) ‖ (C1 ‖ C2)

The rest of the diagram commutes by definition. Moreover, the parallel
composition of hiding maps define a hiding map (corollary 3.2) so by partial-
total universal property there is an isomorphism such that (doted arrow)

(T1 � S1) ‖ (T2 � S2)
(τ1�σ2)‖(τ1�σ2)

��

oo // (T1 ‖ T2)� (S1 ‖ S2)
(τ1⊗τ2)�(σ1⊗σ2)
��

(A1 ‖ C1) ‖ (A2 ‖ C2)
γ
// (A1 ‖ A2) ‖ (C1 ‖ C2)

which validates the equation of the proposition.
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Symmetric monoidal structure. As intuited in section 2.1.2 the sym-
metric monoidal structure of CGΣ is induced by the one of E , lifted up to
the level of strategies via renaming of copycat strategies. The construction
described in 1.3 for the plain case also works in the annotated case if propo-
sition 3.12 still holds with Σ-strategies; this is the case:

Proposition 3.12. Let f : A ∼= A′, g : C ∼= C ′ be Σ-isomorphisms, let
σ : A + // B, τ : B + // C, be productive Σ-morphisms then

τ � (f · σ) ' f · (τ � σ)
(τ · g)� σ ' (τ � σ) · g

Proof. We focus one the first equation, the second one is shown similarly.
We first note that by pullback property

τ ~ (σ · f) ' (f ‖ B ‖ C) ◦ (τ ~ σ)

Diagramatically

T ~ S
∨

xx &&

rr ,,
T ~ S
∨

ww &&
S ‖ C

σ‖C ''

rr ,,
A ‖ T

A‖τww

rr
f‖T

,,
S ‖ C
σ‖C ��

A′ ‖ T

A′‖τ
��

A ‖ B ‖ C
f‖B‖C ��

A ‖ B ‖ C

f‖B‖C ((
A′ ‖ B ‖ C A′ ‖ B ‖ C

We can conclude by hiding property.

Duality We conclude on the compact closure of Σ-CG be showing that

ηA : CCA → 1 ‖ (A⊥ ‖ A)
εA : CCA → (A ‖ A⊥)⊥ ‖ 1

satisfy all the laws for the unit and co-unit.

Proposition 3.13. The Σ-strategies ηA : 1 Σ
+ // A⊥⊗A and εA : A⊗A⊥ Σ

+ // 1
satisfy the laws for a compact closed category.

Proof. These two strategies must validate the following equivalences (recall
that we are looking at CGΣ quotiented by ').

cc A ' λA � (εA ⊗ cc A)� αA,A⊥,A
−1 � ( cc A ⊗ ηA)� ρA

−1

cc A⊥ ' ρA⊥ � ( cc A⊥ ⊗ εA)� αA⊥,A,A⊥ � (ηA ⊗ cc A⊥)� λA⊥
−1
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Let us focus on the first one, and let us consider them as Σ-morphisms. By
the zipping Lemma 3.6, there is a hiding map from the 5-ary interaction to
the resulting right hand-side composition that commutes with the projection.
The base game of the interaction is

A ‖ (A ‖ 1) ‖ (A ‖ (A⊥ ‖ A)) ‖ ((A ‖ A⊥) ‖ A) ‖ (1 ‖ A) ‖ A

Every strategy involved in the interaction add constraints on configurations
that do not conflict with each other and that are subsumed by:

A1 ‖

w1

(A2 ‖

w2

1) ‖ (A3 ‖

w2

(A6 ‖

w2

A7)) ‖

w2

((A4 ‖

w2

A5)

v2

‖ A8) ‖

w2

(1 ‖ A9) ‖

w3

A10

Hence configurations of the interaction correspond to the data of 10 con-
figurations x1, . . . x10 of A that satisfy the above constraints (with indices
reflecting the numbering above). This is equivalent to saying that for every
a ∈ x1 with polA(a) = +, there exists an index ka ≥ 1 such that a ∈ xi if
i ≤ k and a /∈ xj if j > k. And symmetrically for a ∈ x10, polA(a) = −,
≥ and <. Moreover, the annotations of the strategies, follow exactly these
causal constraints. In other words, every configuration generates a unifica-
tion problem consisted in:

⊎
a1 ∈ x1

polA(a1) = −


a1 =̇ a1
a2 =̇ a1

. . .
aka =̇ aka−1


⊎

a10 ∈ x10
polA(a10) = +


a10 =̇ a10
a9 =̇ a10

. . .
aka =̇ aka+1


where ai denotes the occurrence of an event a ∈ A in the ith component of
the configuration.

In the above characterisation, configurations with all their maximal events
visible correspond exactly to configurations of CCA (after hiding of the inter-
mediate components). Moreover, the resulting labelling (restricted to outer
component) is exactly the one of λ cc λA

.

This concludes the proof that CGΣ (quotiented by ') forms a compact
closed category.

3.3 Observations and remarks
This chapter introduced a category of Σ-event structure as a more general
framework to reason about Σ-strategies. The definition of annotations on
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Σ-event structures is more general than on Σ-strategies as the annotations
may vary with configurations. The first reason for this generalisation is
that if annotations on event structures are restricted to events – or to say it
otherwise, to annotations on configurations such that knowledge preservation
actually is an identity – then the category has no pullbacks in general.

Example 3.1. Consider the Σ-morphisms σ and τ depicted below:

X ◦◦11

�� **

◦c1 _ ◦c2 Y

��tt
◦◦11 _ ◦◦12

σ &&

◦◦11 ◦c2
τxx

◦◦11 ◦◦22

If the annotations on Σ-event structures were to be fixed once and for all on
every event and could not vary with configurations, then these two morphisms
would not have a pullback. Indeed, no Σ-event structure with annotations
defined on events can subsume both the annotations ofX and the annotations
of Y . The only way for that is to be allowed to change annotations in between
configuration {◦1} and configuration {◦1, ◦2} – as does the actual pullback in
EΣ defined by ◦1 _ ◦2 with annotated configurations {◦◦11 } and {◦c1 _ ◦c2}.

For the particular kind of Σ-morphisms – i.e. the Σ-strategies – we ac-
tually exploit in Σ-E , the above generality is not required: as reflected in
the definition of the interaction for Σ-strategies 2.3, Σ-morphisms that arose
from Σ-strategies do have pullbacks that can be described using annotations
on events only.

Instead of looking for general pullbacks, we could thus have directly re-
stricted our study to Σ-strategies in Σ-E ; this would have been enough for
the applications we consider in part II and III for which annotations are sim-
ple witnesses, or book-keeper: they do not interfere with what is happening
in the strategies at the configuration level and are constrained by the causal
dependencies on events.

Despite being heavier than the event based annotations, we believe that
the more general annotations on configurations can have an interest for mod-
elling settings where annotations actually do have an impact on the execution
flow of strategies. As they stand, annotations on Σ-event structures does not
explicitly generate new causal dependencies between events, however they
may prevent some events from happening during an interaction. Exploiting
the freeness of the general model we can derive the following patterns:
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- Conditions: for 	_ ⊕ the annotations 		 | 	c _ ⊕c imply that the
move ⊕ is only played during an interaction if 	 was instantiated with
some constant c.

- Conditional synchronisation: for 	1
!!
	2
}}

⊕
the annotations 		1

1 		2
2

(equal on every other subset) | 		1
1
##

		1
2

{{
⊕c

imply that the move

⊕ is only played during an interaction if the two negative moves are
instantiated with the same value.

- Conditional inconsistency: for 	1
��
	2
��

⊕1 ⊕2

the annotations

		1
1
��
		2

2

⊕	1
1

		1
1 		2

2
��
⊕c2

(and their restrictions)

and 		1
1
��
		1

2
��

⊕c1 ⊕c2

imply that the two positive moves are inconsistent if

the two negative moves are not instantiated with the same value.

These patterns actually satisfy the productivity condition so Σ-pre-
strategies can carry them. An other interesting question is to see whether
they would be preserved by composition with copycat. It turns out they do.

More generally, one can put two wider conditions on the annotations of
Σ-pre-strategies than simply be the image of a Σ-strategy in order to be
preserved by composition with copycat:

- Σ-receptive: ∀x ∈ C (S), s ∈ (x− x)∗, λxS(s) = s;

- Σ-courteous: ∀x ⊆− x′ ∈ C (S), λx′�x = λx.

Coupled with receptivity, Σ-receptivity ensures that every Opponent move
available in the game is allowed by a Player strategy, whatever its annotation
from Opponent. Similarly to courtesy for causal dependencies, Σ-courtesy en-
sures, at the level of terms, that every change in the annotations is witnessed
by a positive event. This allows for the two strategies to stay synchronised.

All the patterns listed above satisfy these two conditions. Moreover, these
conditions are more general than the one for Σ-strategies, so in particular
every structural morphisms ( cc A, cc ρ, cc s, ε, . . . ) validate them.
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We believe that these conditions are preserved by composition, tensor
and renaming and that they are sufficient (if not necessary, in the case of
pre-Σ-strategies) for the composition with copycat to be neutral. However,
proofs for these statements have not yet been written down.

If they do hold, then the constructions and proofs developed in this chap-
ter will be general enough to show that the corresponding model defines a
compact closed category. We leave this conjecture as future work, together
with the exploration of models in which games themselves carry annotations,
viewed as conditions on the annotations of strategies.



Chapter 4

Simpler models

Chapters 2 and 3 present an enrichment of concurrent game models based on
event structures by putting annotations on strategies. In part II and III, we
make use of these enriched models to give a semantic for first order proofs
and resource analysis of concurrent programs. In the first case, games and
strategies are deterministic; in the second case, we deal with non determinism
and conflicts, but we are not interested in remembering the exact branching
or conflicting points in a strategy. In these contexts, the setting of concurrent
games can be simplified leading to two lighter concurrent game models which
inherit from the structural properties of T-CG.

In this chapter we introduce these simplified versions, named T-Det and
T-Strat. These models can be viewed as enrichments of the simplified version
of plain concurrent games as used by Castellan and Clairambault in [CC16].
They can also be viewed as an enrichment of Mellies and Mimram’s asyn-
chronous games [MM07]. These models are closer to usual sequential games
where strategies are defined as (set of) deterministic plays, except that con-
currency is kept by having partial orders for plays instead of total ones.

In the first two sections, we recall the construction of Det and Strat,
the lighter concurrent game models without annotations. There are no new
results here but their explicit connections with CG is not detailed in the liter-
ature either. In the last section, we finally show that the previous connection
between CG and its simpler models extends smoothly to T-annotations.

4.1 Games and rigid strategies

Rideau and Winskel’s concurrent games are suited to capture both concur-
rency and non-determinism/conflicts. A first simplification one can do on
CG is to consider that strategies cannot internally distinguish two events if
they map to the same move with the same causal history. In other words,
these strategies validate the non-deterministic idempotence a ∨ a = a from
processes. In concurrent games, this translate into
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σ : com + // com

run
*qqx3uu~run

_���

run
_���

done done
� $$,
done

τ : com + // com

run
)qqxrun

_���
done

� &&-done

Figure 4.1: τ is non-deterministically idempotent but not σ.

Definition 4.1. A concurrent strategy σ : S → A is non-deterministically
idempotent if for every s1, s2 ∈ S such that σ(s1) = σ(s2) and [s1)S = [s2)S
as partial order, then s1 = s2.

Note that if σ fails to be non-deterministically idempotent, then the faulty
s1, s2 are necessarily in conflict, i.e. {s1, s2} /∈ ConS, as otherwise [s1] ∪ [s2]
would be a configuration of S contradicting local injectivity.

For example, the left strategy on figure 4.1 does not validate non-
deterministic idempotence as its two run moves are indistinguishable from
a causal and naming point of view. In Strat – the simplified model of CG
that we are introducing in this section –, this strategy will not be distin-
guishable from the strategy on the right of figure 4.1. Such distinction is
useful to capture e.g. must convergence, but this is not under study in our
next developments. Instead, we can focus on rigid strategies, that are non-
deterministic idempotent strategies. As done in [CC16], we will see that in
this case, one can simplify the setting of concurrent games by avoiding the
usual move renaming: a strategy is described in terms of augmentations, that
are, configurations of the game together with a partial order. Let us define
the game model of rigid strategies Strat and show its connection with CG.

4.1.1 The compact closed structure of Strat
In Strat, games are still defined by event structures with polarities, and we
keep the same definition of tensor and dual on them. What changes is the
definition of strategies. Those are no longer described as morphisms of event
structures but as sets of augmentations as defined in the next paragraph.

Rigid strategies First, we give the general notion of augmentations over
a game A, they correspond to configuration xA ∈ C (A) that is more causally
constrained than (xA,≤xA):
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JcomK⊥ ‖ JcomK⊥ ‖ JcomK

run−
%oou

+rry
run+

_���
run+

_���
done−

� ))/
done−

� $$,
done+

Figure 4.2: An augmentation for parallel composition

Definition 4.2. An augmentation over a game A is a partial order q =
(|q|,≤q) such that |q| ∈ C (A) and q respects the game:

∀a1, a2 ∈ |q|, a1 ≤A a2 =⇒ a1 ≤q a2

We write Aug(A) for the set of augmentations on A.

Note that polarities on A do not matter for this definition, we will some-
times use augmentations over event structures without polarities.
Example 4.1. Figure 4.2 displays an augmentation over the composed game
A = JcomK⊥ ‖ JcomK⊥ ‖ JcomK where JcomK interprets the type of com-
mand for an imperative programming language, as introduced in example 2.3.
This augmentation organises the events of A so that the two positive run
arise in parallel after the negative run occurs while, the unique positive done
event must wait for its two negative counterparts before happening. Later,
we will see that this augmentation actually interprets the parallel command
of the (affine) IPA programming language.

As partial orders are a special case of event structures, augmentations
inherit all the operations on event structures and results stated in 1.1. In
particular, augmentations can be rephrased as being partial orders such that
C (q) ⊆ C (A). Two augmentations are equal if there set of configurations
are; inclusion of configurations also defines a partial order on Aug(A):

Definition 4.3. Let q,q′ ∈ Aug(A) then q � q
′ iff C (q) ⊆ C (q′).

Rigid strategies are sets of augmentations that are closed under “prefix”.
The adequate notion of prefix for augmentations is called rigid inclusion.

Definition 4.4. Let q,q′ be two partial orders. We say that q is rigidly
included in q′, or that q is a prefix of q′, written q ↪→ q

′, if |q| ∈ C (q′) and
for every a1, a2 ∈ |q|,

a1 ≤q a2 ⇐⇒ a1 ≤q′ a2
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We are now in position to define rigid strategies. By definition, an aug-
mentation is a configuration of A that is more causally constrained than
what is induced by ≤A. As in CG, strategies are restricted in their choices
of events and new causal constraints:

Definition 4.5. A rigid strategy on A, written σ : A, is a non-empty prefix-
closed σ ⊆ Aug(A), which additionally satisfies

- receptivity: for all q ∈ σ, if |q|
a−

−−⊂ in A, then q ↪→ q
′ ∈ σ such that

|q′| = |q| ∪ {a};

- courtesy: for all q ∈ σ, if a1 _σ a2 and polA(a1, a2) = (−,+), then
a1 _A a2 as well (q is said to be courteous).

It follows by courtesy that q′ is necessarily unique: the immediate depen-
dency of a in q′ is forced by its immediate dependency in A.
Example 4.2. A simple way to construct rigid strategies consists in taking the
set of prefixes of a courteous augmentation q ∈ Aug(A) that is receptive, i.e.
such that if |q|

a
−−⊂ in A, then pol(a) = +. For example, the set of prefixes

of the augmentation depicted on figure 4.2 yields a rigid strategy.
An other way to construct rigid strategies is to derive them from concur-

rent strategies. Given a strategy σ : S → A in CG, every of its configura-
tions x ∈ C (S) can be viewed as an augmentation qx = (σ(x),≤qx) where
σ(s1) ≤qx σ(s2) iff s1 ≤S s2 – well defined as σ : x ' σ(x) is a bijection.
The augmentation qx is called the rigid image of the configuration x. By
courtesy of σ, qx is courteous and the set

Rig(σ) = {qx | x ∈ C (S)}

is clearly closed under prefix and receptive, hence it defines a rigid strategy.
Example 4.3. The rigid version of copycat on A is given by

Rig( cc A) = {qx‖y | x, y ∈ A and y v x} : A⊥ ‖ A

In the next section we will show that every rigid strategy is the image of
some concurrent strategy and that the rigid image of copycat is neutral for
the composition of rigid strategies that we now define.

Composition As previously, a rigid strategy defines a morphism from a
game A to a game B if it plays on A⊥ ‖ B, also written σ : A Strat−−−→ B.

Composition of rigid strategies is defined component-wise by lifting com-
position of augmentations, which we shall first introduce.
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Definition 4.6. Two dual augmentations q ∈ Aug(A), q′ ∈ Aug(A⊥) such
that |q| = |q′| are causally compatible if (≤q ∪ ≤q′)∗ is a partial order. Then
we write q ∧ q′ = (|q|,≤q∧q′) for the resulting augmentation over A.

In the sequel, writing q∧q′ will implicitly mean that q and q′ are causally
compatible. Again polarities do not matter here. Note also that

Lemma 4.1. Let σ : S → A, τ : T → A⊥ be two concurrent strategies, then
for every causally compatible q ∈ Rig(σ), q′ ∈ Rig(τ), there is a secured
bijection ϕ ∈ Bsec

σ,τ such that

σ ◦ π1(ϕ) = (q ∧ q′) = τ ◦ π1(ϕ)

as partial order.

Proof. As an augmentation of Rig(σ), q is of the form qxS for some xS ∈
C (S); similarly q′ = qxT for some xT ∈ C (T ). It is then immediate to see
that ϕ : xS ' xT defines a secured bijection, by definition of Rig and ∧. Note
that ϕ is not unique as xS and xT might not be.

Generalising the above definition to q ∈ Aug(A⊥ ‖ B) and q′ ∈ Aug(B⊥ ‖
C), we say that they are causally compatible if |q| = xA ‖ xB, |q′| = xB ‖
xC , and (q ‖ xC), (xA ‖ q′) are causally compatible – where xA, xC are
regarded as (xA,≤A) ∈ Aug(A), (xC ,≤C) ∈ Aug(C). Their interaction is
the augmentation over A ‖ B ‖ C defined by

q
′ ~ q = (q ‖ xC) ∧ (xA ‖ q′).

It has configurations of the form yA ‖ yB ‖ yC where yA ‖ yB ∈ C (q) and
yB ‖ yC ∈ C (q′).

There is a slight abuse of notation in the above: we make implicit the
renaming (to a ternary parallel composition) that ensures that q ‖ xC and
xA ‖ q′ both have events in A ‖ B ‖ C. We keep this renaming implicit (as is
often done in game semantics) because having it explicit overloads notations
with no gain in clarity. Moreover, this renaming disappears in the hiding
step.

As in CG, augmentations can be projected onto some components of their
game.

Definition 4.7. Let q = (|q|,≤q) ∈ Aug(A) and V ⊆ A. The projection of
q on V is q↓V = (|q| ∩ V,≤q↓V ), where a1 ≤q↓V a2 iff a1 ≤q a2. This defines
an augmentation over (A ↓ V ).
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(com⊥ ‖ com⊥)‖ bool

q−
.ss{

run+
,rrz

_���
run−_���

� ((/

done−
� ##+done+ tt+

(com⊥ ‖ com⊥)‖ bool

q−
.ss{

run+
,rrz

_���
run−_���

done−,rrz � ##+done+ ff+

Figure 4.3: The two maximal augmentations of JstrictK

In the case of the interaction we get the composition of augmentations
q,q′ as

q
′ � q = (q′ ~ q)↓(A‖C) ∈ Aug(A⊥ ‖ C)

Using that we can define the composition of strategies.

Definition 4.8. Let σ : A Strat−−−→ B and τ : B Strat−−−→ C be two rigid strategies.
Their composition is

τ � σ = {q′ � q | q′ ∈ τ & q ∈ σ causally compatible}

Then, τ � σ : A⊥ ‖ C is a rigid strategy.

Example 4.4. For a non-trivial example of composition, we give in figure 4.3
the two maximal (up to rigid inclusion) augmentations of a strategy corre-
sponding to the interpretation of the following term of (affine) IPA:

strict = (λf.newref r in (f (r := tt)); !r) : (com→ com)→ bool

This term implements a test of strictness: it set a flag r to false and runs
the command f on the assignment r := tt, hence returning true only if f
calls its argument before returning. This is reflected in the left maximal
augmentation by the event tt+ being causally dependent from run− and
done−.

The strategy interpreting strict is the result of the composition of the
strategy with maximal augmentation at the right hand side of figure 4.4 (in-
terpreting the open term λf. f (r := tt); !r for r a memory location) and the
strategy cell : JmemK that interprets a memory cell, with maximal augmen-
tations at the left hand side of figure 4.4 (the reader may notice that this is
actually the rigid image of the strategy cell presented on figure 1.5). Perform-
ing composition as in definition 4.8 produces the two maximal augmentations
of Figure 4.3.
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JmemK

r−
_���

wtt−
_���+rrytt+ ok+

r−
_��� � %%,

wtt−
_���

ff+ ok+

JmemK⊥ ‖ J(com⊥ ‖ com⊥) ‖ boolK

q−
,rrz

run+
_���*qqxrun−

&oov
done−

%oouwtt+
_���

r+
_���

ok−
� ((/

b−

� **0done+ b+

Figure 4.4: The rigid strategies cell and Jλf. f (r := tt); !rK

It is a good exercise to check that the composition as defined in 4.8
preserves courtesy on augmentations and receptivity on rigid strategies. We
refrain however from giving the details here as we will show in the next
section that composition of rigid strategies is the mirror of composition of
strategies in CG via Rig. Instead, we state the following useful lemma:

Lemma 4.2. For every q ∈ τ � σ, there is a minimal witness (for prefix
inclusion) wit(q) ∈ Aug(τ ~ σ) s.t. witσ(q)↓A||C = q.

Proof. This is direct by definition of τ � σ. However note that, although
minimal, this witness might not be unique.

Tensor product As for composition, the tensor product of two rigid strate-
gies is first defined at the level of augmentations then lifted up component-
wise. For q ∈ Aug(A⊥ ‖ C),q′ ∈ Aug(B⊥ ‖ D) we set

q⊗ q = γ ∗ (q ‖ q′) ∈ Aug(A⊥ ‖ B⊥ ‖ C ‖ D)

where γ : (A ‖ C) ‖ (B⊥ ‖ D) ∼= (A⊥ ‖ B⊥) ‖ (C ‖ D) is the same game
isomorphism as in section 1.2 but ∗ is the global renaming operator defined
by

Definition 4.9. Let f : A ∼= A′ be a game isomorphism and let q ∈ Aug(A),
the global renaming of q following f is the partial order

f ∗ q = (f(|q|),≤f∗q)

where f(e) ≤f∗q f(e′) iff e ≤q e′. We have f ∗ q ∈ Aug(A′).
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The last statement is easy to see as global renaming leaves the structure
of q unchanged, in particular

C (f ∗ q) = {f x | x ∈ C (q)}

The above remark also implies that renaming preserves � and respect cour-
tesy as well. From there one define, the tensor product of two rigid strategies,
σ : A Strat−−−→ C, τ : B Strat−−−→ D to be

σ ⊗ τ = {qσ ⊗ qτ | qσ ∈ σ,qτ ∈ τ} : (A⊗B) Strat−−−→ (C ⊗D)

It is immediate to see that this preserves receptivity.

Pre-order enrichment The partial order � on augmentations can be
lifted to rigid strategies component-wise:

Definition 4.10. Let σ, σ′ : A be two rigid strategies, then σ � σ′ iff for
every q ∈ σ there exists q′ ∈ σ′ such that q � q

′.
W.l.o.g, one can assume that |q| = |q′| (by prefix closure).

From the above, it is immediate to conclude that ⊗ preserves � on rigid
strategies. The fact that ~ and � preserve � on rigid strategies as well then
is a consequence of the following lemma:

Lemma 4.3. Let q1 � q
′
1 ∈ Aug(A⊥ ‖ B) and q2 � q

′
2 ∈ Aug(B⊥ ‖ C)

such that |q1| = |q′1|, |q2| = |q′2|, and q1,q2 are causally compatible, then q′1
and q′2 are causally compatible and q2 � q1 � q

′
2 � q′1.

Proof. By assumption |q1| = |q′1|, |q2| = |q′2| and, by compatibility, |q1| =
|q2|, so |q′1| = |q′2|. Moreover, the partial order of q′1 and q′2 are respectively
included in the one of q1 and q2, so the transitive and reflexive closure of
their union must be included in the one of ≤q2~q1 hence define a partial
order. The inequalities on interaction and composition follow.

Compact closure In the next section we will see that ⊗ defines a monoidal
structure on rigid strategies. Its structural morphisms correspond to the rigid
image of the structural morphisms in CG. Similarly, taking the rigid image
of ηA and νA for unit and co-unit we will conclude that

Theorem 4.1. Games and rigid strategies, together with �, (1,⊗) and (_)⊥
form a compact closed category Strat. It is enriched over �
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4.1.2 From CG to Strat
In this section we show that Strat is well-defined as a compact closed category
by relating it to CG. More precisely, we complete the map Rig : CG→ Strat
by a backward map top : Strat→ CG

CG
Rig

((
Strat

top
ff

such that Rig ◦ top = idStrat. We show that Rig and Rig ◦ top are functorial
and that top(Rig(−)) preserves (up to isomorphism) structural strategies of
CG such as copycat. From there we conclude that Strat inherits all the
structural properties of CG. This development is not required in the sequel,
it is there for completeness.

Primes As intuited in the introduction, rigid strategies correspond to con-
current strategies that are non-deterministically idempotent, that are strate-
gies in which every events is characterised by its corresponding move in the
game and its causal history. We make this statement precise by reconstruct-
ing a concurrent strategy from a rigid strategy using its prime augmentations,
that are augmentations with a unique maximal event.
Definition 4.11. Let σ : A be a rigid strategy, we define Pr(σ) the event
structure with

- Events: prime augmentations of σ, written qa, with a the maximal
event of the prime q;

- Causality: qa ≤ qb iff qa ↪→ qb;

- Consistency: X ∈ ConPr(σ) iff ∃p ∈ σ such that for every q ∈ X,
q ↪→ p.

The mapping f : qa 7→ a defines a concurrent strategy top(σ) : Pr(σ)→ A.
In the above, consistency ensures that f is locally injective as it implies

in particular that any two consistent primes with the same top events must
agree on their causal history – in fact two primes are consistent if they agree
on the causal history of all of their common events. It routine to check that
Pr(σ) is a well-defined event structure.

For courtesy and receptivity of top(σ), this is a consequence of σ being
courteous and receptive as a rigid strategy. Indeed, keeping in mind that
(x,≤Pr(σ)) and qx are order isomorphic (via σ), courtesy and receptivity are
inherited from σ following the lemma below:
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Lemma 4.4. Let σ : A be a rigid strategy, then the mappings

Rig : (C (Pr |σ|),⊆) → (σ, ↪→)
x 7→ qx

and
Pr : (σ, ↪→) → (C (Pr |σ|),⊆)

q 7→ {qa = ([a]q,≤q) | a ∈ q}

are order-isomorphic and they preserve the internal partial order. The reuse
of Pr(−), and Rig(−) shall not induce confusion as it is clear in context on
which object they apply.

Proof. First check that Rig is well defined and that qx is an augmentation
of σ. By definition |qx| = (∪qa∈xa) so, by down-closure of x, it is equal to
(∪x|qa|). Moreover qx and ∪xqa have the same partial order as a ≤qx a′ iff
qa ≤Pr(σ)qa′ iff a ≤qa′ a

′, with qa, qa′ the inverse image of a and a′ via f in
x. By consistency of x, ∪xqa ∈ σ, so qx ∈ σ.

That Pr(q) is well-defined is a direct check and Pr(−) and Rig(−) are
obviously inverse of each other. Moreover it is clear that they preserve order
as well as the internal partial order.

By definition of Rig(−), the above lemma also induces that

Corollary 4.1. Let σ : A be a rigid strategy, then Rig(top(σ)) = σ.

The converse is not true, even up to isomorphism, the left concurrent
strategy on figure 4.1, call it σ, is different from top(Rig(σ)). However, the
strategy on the right, call it σ′ is such that top(Rig(σ′)) ' σ′. More generally,

Lemma 4.5. Let σ : S → A be a non-deterministically idempotent concur-
rent strategy then top(Rig(σ)) ' σ.

Proof. Given a concurrent strategy σ : S → A, that the mapping

ϕ : S → Pr(Rig(σ))
s 7→ q[s]

is a morphism of event structures such that σ = top(Rig(σ)) ◦ ϕ. By defini-
tion, it defines an isomorphism if σ is non-deterministically idempotent.
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Rig properties. We now show that Rig preserves ', � and ⊗ from CG.

Lemma 4.6. Let σ, τ : A + // B, be two concurrent strategies such that σ ' τ ,
then Rig(σ) = Rig(τ).

Proof. Immediate by definition of Rig and '.

Lemma 4.7. Let σ : S → A⊥ ‖ B, τ : T → B⊥ ‖ C be two concurrent
strategies, then Rig(τ � σ) = Rig(τ)� Rig(σ).

Proof. Let qxT � qxS ∈ Rig(τ) � Rig(σ), then by definition, qxT and qxS

are causally compatible and by lemma 4.1 xT ~ xS is a configuration of
C (T ~S) such that qxT~xS = qxT ~qxS so qxT�xS = qxT �qxS . Conversely,
for qxT�xS ∈ Rig(τ � σ), qxT and qxS are causally compatible and again
qxT�xS = qxT � qxS . So Rig(τ � σ) = Rig(τ)� Rig(σ).

Lemma 4.8. Let σ : A + // C, τ : B + // D be two concurrent strategies, then
Rig(σ ⊗ τ) = Rig(σ)⊗ Rig(τ).

Proof. This is just a matter of checking that for every xS ⊗ xT ∈ C (S ⊗ T ),
qxS⊗xT = qxS ⊗ qxT , which is direct following the definitions above.

top properties As for Rig, top preserves ⊗.

Lemma 4.9. Let σ : A Strat−−−→ C, τ : B Strat−−−→ D be two rigid strategies, then
top(σ ⊗ τ) ' top(σ)⊗ top(τ).

Proof. Using lemma 4.4 there is an obvious isomorphism between the two
strategies, derived from the order-isomorphism:

C (Pr(σ ⊗ τ)) → C (Pr(σ)) ‖ C (Pr(τ))
Pr(qσ ⊗ qτ ) 7→ Pr(qσ) ‖ Pr(qτ )

However, top on its own does not preserve the composition of rigid strate-
gies. Yet:

Lemma 4.10. Let σ : A Strat−−−→ B, τ : B Strat−−−→ C be two rigid strategies, then
Rig(top(τ � σ)) = Rig(top(τ)� top(σ)).

Proof. By corollary 4.1 this is equivalent to show that τ � σ = Rig(top(τ)�
top(σ)).

Let q ∈ τ � σ, then by lemma 4.2 it has a minimal witness qτ ~ qσ ∈
τ ~σ. But, by lemma 4.4, qσ,qτ are causally compatible iff Pr(qσ) ∈ top(σ)
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and Pr(qτ ) ∈ top(τ) define a secured bijection. Hence Pr(qτ ) � Pr(qσ) ∈
top(τ) � top(σ) and is such that Rig(Pr(qτ ) � Pr(qσ)) = q. So τ � σ ⊆
Rig(top(τ)� top(σ)).

Reciprocally, let xtop(τ) � xtop(σ) ∈ top(τ) � top(σ), then, by lemma 4.4
again, there is qσ ∈ σ and qτ ∈ τ such that Pr(qσ) = xtop(σ), Pr(qτ ) = xtop(τ)
and qσ,qτ are causally compatible. So qτ � qσ ∈ τ � σ and is such that
qτ � qσ = Rig(xtop(τ) � xtop(σ)). Hence τ � σ ⊇ Rig(top(τ)� top(σ)).

Structure inheritance. The five previous lemmas and corollary 4.1 induce
that, by inheritance from CG, the composition of rigid strategies is associative
and that the tensor product is functorial in Strat. Let us do the case for
associativity – the rest works similarly. Let σ : A Strat−−−→ B, τ : B Strat−−−→ C,
ρ : C Strat−−−→ D be rigid strategies, then

(ρ� τ)� σ = Rig(top((ρ� τ)� σ))
= Rig((top(ρ)� top(τ))� top(σ))
= Rig(top(ρ� τ))� Rig(top(σ))
= Rig(top(ρ)� top(τ))� Rig(top(σ))
= Rig((top(ρ)� top(τ))� top(σ))
= Rig(top(ρ)� (top(τ)� top(σ)))
= Rig(top(ρ))� Rig((top(τ)� top(σ)))
= Rig(top(ρ))� Rig((top(τ � σ)))
= Rig(top(ρ� (τ � σ)))
= ρ� (τ � σ)

For structural morphisms, one can note that concurrent copycat strategies
are injective so they are non-deterministically idempotent: given a game A,
cc A(a) = cc A(a′) iff a = a′. By lemma 4.5, this implies in particular that
for every f : A ∼= A′ (including f = idA), top(Rig( cc f )) ' cc f . From there
one can check that the rigid image of every structural morphism in CG is a
structural morphism in Strat. Let us do the case for cc A – others are similar.
Let ρ : A Strat−−−→ B a rigid strategy,

ρ� Rig( cc A) = Rig(top(ρ� Rig( cc A)))
= Rig((top(ρ)� top(Rig( cc A))))
= Rig(top(ρ)� cc A)
= Rig(top(ρ))
= ρ

Note that Rig( cc f ) can be rephrased in terms of rigid copycat strategies
using local left renaming:
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Definition 4.12. Let f : A ∼= A′ be a game isomorphism and let q ∈
AugA⊥ ‖ B, then the local left renaming of q via f is the partial order

(f · q) = (f ‖ B) ∗ q

Obviously f · q ∈ Aug((A′)⊥ ‖ B).

It is a simple check to see Rig( cc f ) = f · (Rig( cc A)).

4.2 Elementary games and strategies
Rideau and Winskel’s concurrent games are suited to capture both con-
currency and non-determinism/conflicts. In the previous section we have
recalled how one can simplify the setting and restrict the kind of non-
determinism allowed in strategies. We now present an other (and more
drastic) simplification that consists in restricting concurrent games to only
elementary games, that are, games with no conflicts, and strategies upon
them to elementary strategies, that are strategies with no conflicts either.
This leads to a purely deterministic (but still concurrent) model, named
Det, which has direct connections with both CG and Strat.

4.2.1 The compact closed structure of Det
Removing conflicts, event structures become partial orders, sometimes called
elementary event structures (ees). Similarly to augmentations, an ees A is
described as A = (|A|,≤A) with |A| its set of events and ≤A its causal
(partial) order, that enjoy the finite history property of event structure.

All the operations and notations defined in 1.1 can be restricted to ees.
In particular, ees and their morphisms form a monoidal subcategory of E .

Elementary games are defined as ees with polarities.

Definition 4.13. An elementary game is an ees A = (|A|,≤A, polA) with
(|A|,≤A) and a polarity function

polA : |A| → {+,−}

Parallel composition and the dual operation (−)⊥ are obviously stable on
elementary games.



106 4. Simpler models

Elementary strategies Elementary games are games without conflict,
they form a subset of concurrent games that are closed under dual and ten-
sor product. Informally, elementary strategies are concurrent strategies on
elementary games that do not have internal conflict either. In CG such
strategies correspond to morphisms σ : S → A where S and A are both
ees. In Strat this matches with rigid strategies that have a unique maximal
augmentation for the prefix relation. We will see that in both cases, this can
be simplified by the data of a single augmentation.

Definition 4.14. A elementary strategy on an elementary game A is an ees
σ = (|σ|,≤σ) ∈ Aug(A) that verifies the following two additional conditions:

- Receptivity. If x ∈ C (σ) and x
a−

−−⊂ in A (meaning x ∪ {a} ∈ C (A)),
then a ∈ |σ|.

- Courtesy. If a1 _σ a2 and (polA(a1) = + or polA(a2) = −), then
a1 _A a2 as well.

We write σ : A to mean that σ is a strategy on the elementary game A.

Dually to the remark above, one can regard σ : A as a concurrent strategy
in the usual sense through the identity-on-events map of event structures
id : σ → A. The conditions on elementary strategies are almost exactly the
same as the standard ones, except receptivity which is slightly “optimized”.
For completeness, the lemma below relates the receptivity condition above
to the usual one.

Lemma 4.11. Take σ ∈ Aug(A) satisfying courtesy. Then, it is receptive
iff for all x ∈ C (A) such that x

a−

−−⊂ in A, x ∪ {a} ∈ C (σ).

Proof. Right to left is obvious; Left to right requires courtesy: If x
a−

−−⊂ , then
by receptivity we know that a ∈ |σ|. If a′ _σ a then, by courtesy, we have
a′ _A a as well. Since x ∪ {a} ∈ C (A), then we know that for all a′ _A a,
we have a′ ∈ x. Therefore, for all a′ _σ a, we have a′ ∈ x. It follows that
x ∪ {a} ∈ C (σ) as well.

Because of the absence of event renaming in elementary strategies, it
worth noting that isomorphism of elementary strategies in CG yields equality:

Lemma 4.12. If σ, σ′ : A are two elementary strategies such that σ ' σ′

then σ = σ′.

Proof. By definition there is an isomorphism of ees ϕ : σ ∼= σ′ such that
idσ = idσ′ ◦ ϕ. Hence ϕ = idσ.
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Composition. As previously, an elementary strategy defines a morphism
from an elementary game A to elementary game B if it plays on A⊥ ‖ B.
We write σ : A Det−−→ B.

Being a particular case of regular plain strategies, elementary strategies
can be composed in CG, and it is clear enough that the result has no conflicts.
However, composition as defined in section 1.2.3 performs a renaming on the
events of the game. In what follows we give an alternative definition for
the composition of elementary strategies and show that it is isomorphic to
the usual composition in CG. Using the wording of augmentations, we first
introduce the notion of secured event.

Definition 4.15. Let σ : A and τ : A⊥ be two elementary strategies, an
event a ∈ |σ| ∩ |τ | is secured if there exist two prefixes q ↪→ σ, p ↪→ τ such
that a ∈ |q| ∩ |p| and q, p are causally compatible.

Note that if a is secured, then there exists a unique minimal pair of such
causally compatible prefixes, obtained as the intersection of all possible pairs.
In this case q ∧ p is prime with maximal event a, we write it qa. Following
lemma 4.1, there is a one to one correspondence between secured events and
prime secured bijection in the interaction of σ and τ viewed as concurrent
strategies. More generally,

Proposition 4.1. Let σ : A and τ : A⊥ be two elementary strategies, their
interaction σ∧τ : A in CG is isomorphic to the augmentation over A defined
by

- Events: secured events in |σ| ∩ |τ |;

- Causality: (≤σ ∪ ≤τ )∗ restricted to secured events;

and viewed as a concurrent strategy via the identity-on-event morphism.

Proof. From the remark above, the projections Π1 = Π2 define a bijection
between |σ ∧ τ | and {a ∈ |σ| ~ |τ | | a is secured}. Moreover, σ ∧ τ and
idA ◦Π1 are equal by definition. For causality, one follows lemma 1.5 stating
that [(a, a)]ϕ ≤σ∧τ [(a′, a′)]ϕ′ iff a ≤ϕ a′ which is equivalent to (≤σ ∪ ≤τ )∗ by
lemma 4.1.

This alternative version of σ ∧ τ defines an elementary strategy, it is the
elementary interaction of σ and τ , also written σ ∧ τ . This extends to

Definition 4.16. Let σ : A Det−−→ B and τ : B Det−−→ C be two elementary
strategies, their interaction τ ~ σ is the augmentation:

τ ~ σ = (σ ‖ C) ∧ (A ‖ τ) ∈ Aug(A ‖ B ‖ C)
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This operation is well-defined as σ,C,A, τ are all ees and parallel com-
position is defined on ees. Yet, there is again a slight abuse of notation (an
implicit renaming to a ternary parallel composition) ensuring that σ ‖ C
and A ‖ τ both have events a subset of those of A ‖ B ‖ C. This renaming
disappears with hiding:

Definition 4.17. Let σ : A Det−−→ B and τ : B Det−−→ C be two elementary
strategies. There composition is the augmentation:

τ � σ = (τ ~ σ)↓(A‖C)

which is an elementary strategy by definitions 1.13 and 4.14.

From definition 4.17, τ � σ has events the secured events that are visible
in A⊥ ‖ C, partially ordered by restriction of the graph (≤σ ∪ ≤τ )∗. In
particular, every configuration x ∈ C (τ ~ σ) is of the form

xA ‖ xB ‖ xC

such thatxA ‖ xB ∈ C (σ), xB ‖ xC ∈ C (τ) and (≤σ ∪ ≤τ )∗ ∩ x2 defines
a partial order. Finally, for every x ∈ C (τ � σ) there is a unique minimal
witness for x:

[x]τ~σ ∈ C (τ ~ σ)

Categorical structure Composition in Det inherits its categorical prop-
erties from composition in CG. Writing �CG for the usual composition in
CG, let us first relate the two:

Lemma 4.13. Let σ : A Det−−→ B and τ : B Det−−→ C be two elementary strate-
gies, then τ � σ ' τ �CG σ in CG.

Proof. This is clear from proposition 4.1, as projection preserve isomor-
phisms.

Associativity follows as an immediate corollary:

Corollary 4.2. Let σ : A Det−−→ B, τ : B Det−−→ C, ρ : C Det−−→ D be three
elementary strategies, then

ρ� (τ � σ) = (ρ� τ)� σ

Proof. By lemma 4.13 and associativity of �CG

ρ� (τ � σ) ' (ρ�CG τ)�CG σ ' ρ�CG (τ �CG σ) ' ρ� (τ � σ)

By lemma 4.12, this leads to the equality of the outer elementary strategies.
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There is no change to be made on the definition of copycat strategies
as they already define elementary strategies on elementary games – their
consistency matching with those of the game they play on. By inheritance
from CG and following lemmas 4.13 and 4.12 again, they are neutral for the
above composition with respect to equality.

Concurrent copycat strategies on elementary games match the definition
of elementary strategies – recall that for every game A, cc A : CCA → A⊥ ‖ A
is the-identity-on-event map. Using lemmas 4.13 and 4.12 as above, one can
see that for every elementary σ : A Det−−→ B,

σ � cc A ' σ �CG cc A ' σ

hence σ� cc A = σ and so copycat strategies are also neutrals for the elemen-
tary composition.

In the end, we get

Proposition 4.2. Elementary games and strategies define a category, writ-
ten Det.

We conclude this section by showing how Det inherits of the compact
closed structure of CG.

Compact closed structure Following CG, the tensor product of two el-
ementary games A and B is still defined by A⊗B = A ‖ B. As in Strat, we
use global renaming to define the tensor product of two elementary strategies.

Definition 4.18. Let σ : A Det−−→ C, τ : B Det−−→ D be two elementary strate-
gies, their tensor product in Det is

σ ⊗ τ = γ ∗ (σ ‖ τ) : (A⊗B)⊥ ‖ (C ⊗D)

with γ : (A ‖ C) ‖ (B⊥ ‖ D) ∼= (A⊥ ‖ B⊥) ‖ (C ‖ D).

This leads to an elementary strategy whose configurations are exactly
those of the form

(xA ‖ xB) ‖ (xC ‖ xD) ∈ C ((A ‖ B)⊥ ‖ (C ‖ D))

such that xA ‖ xC ∈ C (σ1) and xB ‖ xD ∈ C (σ2).
Again, the alternative definition for tensor on elementary strategies is

isomorphic to the usual one, denoted ⊗CG in CG:

Lemma 4.14. Let σ : A Det−−→ C and τ : B Det−−→ D be two elementary
strategies, then σ ⊗ τ ' σ ⊗CG τ in CG.
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This is a consequence of the more general lemma:

Lemma 4.15. Let σ : A be an elementary strategy and let f : A ∼= A′ be an
isomorphism of ees, then f ∗ σ ' f ◦ σ in CG.

Proof. By definition of global renaming, f�|σ| defines an isomorphism of event
structures |σ| ∼= |f ∗σ| and clearly f ◦ idA = idA′ ◦f�|σ| so their corresponding
strategies are isomorphic in CG.

Following the same reasoning as for associativity of composition and neu-
trality of copycats, bifunctoriality of ⊗CG and the above lemma implies that
the tensor product on elementary strategies is a bifunctor

− ⊗ − : Det×Det→ Det

In CG, the structural strategies that turn ⊗ into a monoidal structure are
defined as left renamings of copycat strategies. These renamings are based on
post-compositions of the strategies regarded as and do not define elementary
strategies. However they can simply be adapted to elementary strategies by
global renaming; we reset:

Definition 4.19. Let f : A ∼= A′ be an ees isomorphism and let q be an
augmentation over A⊥ ‖ B, the local left renaming of q via f is the partial
order

(f · q) = (f ‖ B) ∗ q

Obviously f · q ∈ Aug((A′)⊥ ‖ B).

Following lemma 4.15 again, for σ an elementary strategy, the elementary
version of f · σ is isomorphic to its usual version in CG and the monoidal
structure of ⊗ in CG is thus transferred onto Det.

Finally, as for copycat, the unit ηA and co-unit νA in CG define elementary
strategies on elementary games, so following again the same reasoning, one
can conclude that the compact closed structure onto CG is transferred onto
Det.

Theorem 4.2. Elementary games and strategies, together with �, (1,⊗) and
(_)⊥ form a compact closed category Det.

In fact, Det is also order enriched by � defined as previously on partial
orders. The congruence of ⊗ and � with respect to � is direct from the
characterisation their configurations (below definitions 4.18 and 4.17). Al-
ternatively, this is a consequence of the connection between Det and Strat
described in the following section.
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4.2.2 Relation with Strat
As mentioned when introduced, elementary strategies can be viewed through
two different prisms:

1. either as a subset of the usual concurrent strategies on elementary
games, the restriction then corresponds to strategies being only allowed
to have for events a subset of moves of their game, considering that
renaming events is unnecessary without non-determinism;

2. or as a simplification of rigid strategies on elementary games as only
one augmentation is then needed to fully describe a strategy.

In this section we comment on the second point. The objective is to give a
better understanding of the three models but its content will not be required
in the sequel.

Fat elementary strategies As mentioned in example 4.2, the prefix clo-
sure of an elementary strategy σ : A gives rise to a rigid strategy Rig(σ) : A,
also called the fat version of σ, written Fat(σ). By definition, Fat(σ) has a
unique maximal augmentation, σ.

Conversely, given an elementary game A and a rigid strategy σ : A with
a unique maximal augmentation for prefix, its meager version, Meager(σ) =
max(σ), defines an elementary strategy on A.

Obviously, Meager ◦ Fat = idDet, and Fat ◦Meager is the identity where it
is defined. Thus there is a bijection between elementary strategies and rigid
strategies over elementary games with a unique maximal augmentation for
the rigid inclusion, we call those last strategies rigid elementary strategies.

One can note that, as Fat(σ) is actually equal to Rig(σ), then by lem-
mas 4.6, 4.7 and 4.8, it is functorial. In particular since Meager(Fat(σ)) =
max(Fat(σ)) = σ, this yields an interesting corollary, translated (on the first
line) the fact that the interaction between two elementary strategies corre-
spond to the maximal partial order on which they both agree.

Corollary 4.3. Let σ : A Det−−→ B, τ : B Det−−→ C and ρ : D Det−−→ C then these
three equalities hold:

τ ~ σ = max(Rig(τ)~ Rig(σ))

τ � σ = max(Rig(τ)� Rig(σ))

ρ⊗ σ = max(Rig(ρ)⊗ Rig(σ))
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Meager rigid strategies The fat and meager relation between elementary
strategies and rigid elementary strategies can be extended to the whole set
of rigid strategies by considering meager strategies:

Definition 4.20. Let A be a game, a meager strategy over A is a set of
courteous and receptive augmentations, σ ⊆ Aug(A), such for every q,q′ ∈ σ,
q and q′ are incomparable for rigid inclusion.

Meager and Fat (extended to sets of augmentation component-wise) de-
fine an isomorphism between the set of rigid strategies, partially order by
set-inclusion, and the set of meager strategies, partially ordered by prefix
inclusion. Meager strategies are thus useful to compare or represent (fat)
rigid strategies. As already shown on various examples, we will mostly use
the meager view on rigid strategies when describing them.

However, if a tensor product can be defined on meager strategies by lifting
the tensor product on augmentations component-wise, the composition of
meager strategies using the elementary composition component-wise on their
maximal augmentations is not well-defined: it may be that the interaction of
two maximal augmentations results in a non-maximal augmentations. The
representation of rigid strategies through their meager form thus should not
be misleading: if considering a composition, this will actually refer to the
usual composition on rigid strategies, letting,

(τ � σ) = Meager(Fat(τ)� Fat(σ))

for σ : A Strat−−−→ B, τ : B Strat−−−→ C two meager strategies.

4.3 Putting annotations back
In this section we show that the two simplified model of CG presented above
extend well with annotations on strategies. As Det and Strat are both based
on augmentations, and these are closely related to configurations of concur-
rent strategies, we take the reverse path from the previous sections and first
define a notion of annotated augmentations inspired by the configurations of
annotated concurrent strategies. We do it in the general case of annotations
by an inequational theory T.

4.3.1 T-augmentations
Consider T = (Σ,E) an inequational theory. Recall that T(V), the free T-
algebra over V , is defined by (TmΣ(V)/≡E, {−}E) so that substitution is stable



4.3 Putting annotations back 113

with respect to ≡E and ≤E. Also recall that an assignment ρ : V → T(V) is
said to be idempotent: if for every x ∈ V , {ρ(v)}E[ρ] = {ρ(v)}E.

We now define T-augmentations:

Definition 4.21. A T-augmentation over an event structure A is an aug-
mentation q ∈ Aug(A) together with an idempotent function

λq : |q| → T(|q|)

called the annotation of q.
We write T-Aug(A) for the set of T-augmentations on A. It is partially

ordered by q � q
′ iff q � q

′ as plain augmentations (def 4.3) and for every
a ∈ q, λq(a) ≤E λq′(a).

Example 4.5. Given a T-concurrent strategy (σ, λσ) : S → A, and a con-
figuration x ∈ C (S), its rigid image qx extends to a T-augmentation by
setting:

λqx(σ(s+)) = λσ(s+)[σ]
λqx(σ(s−)) = {σ(s)}E

From now on, qx will stand for (qx, λqx), the T-rigid image of x.
Note that T-augmentations are more general than what is expected from

the rigid image of the configurations in a T-strategy. In particular, they are
defined on both positive and negative moves. This generality is necessary for
talking about augmentations that are not defined on a game but only on event
structure without polarity as, for example, the interactions of two causally
compatible augmentations. For strategies, however, we will only be interested
in certain kinds of augmentations that satisfy two sanity properties:

Definition 4.22. Let A be a game and q ∈ T-Aug, then q is

- T-receptive if for every a− ∈ |q|, λq(a) = {a}E;

- T-courteous if for every a+ ∈ |q|, λq(a) ∈ T([a]−
q

);

In the above, T-courtesy is not surprising as it matches with the definition
of annotations on positive moves in T-concurrent strategies. T-receptivity on
the other side should not cause more surprise as it only makes explicit the
fact that annotations on negative moves are open to any values provided by
Opponent.

One can check that the T-rigid image of a T-concurrent strategy yields
T-receptive and T-courteous augmentations. In fact following the same com-
pletion of positive annotations with negative equivalence classes as presented
in example 4.5, it is easy to see that:
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Lemma 4.16. Let A be a game and q ∈ Aug(A), then there is a one-to-one
correspondence between T-courteous and T-receptive annotations for q and
functions of the form λ : a ∈ |q|+ → T([a]−

q
).

Composition We now show how constructions on augmentations ex-
tend to T-augmentations. Starting with interaction, we say that two T-
augmentations q ∈ T-Aug(A⊥ ‖ B),q′ ∈ T-Aug(B⊥ ‖ C) are causally com-
patible if their underlying augmentations are.

Definition 4.23. Let q ∈ T-Aug(A⊥ ‖ B),q′ ∈ T-Aug(B⊥ ‖ C) be two
causally compatible T-courteous and T-receptive augmentations, their inter-
action is q′ ~ q together with the annotation λq′~q inductively defined on
<q′~q by:

λq′~q : |q′ ~ q| → Tmσ(|q′ ~ q|)
e ∈ (A⊥ ‖ B+) 7→ λq(e)[λq′~q]
e′ ∈ (B− ‖ C) 7→ λq′(e′)[λq′~q]

We have (q′ ~ q, λq′~q) ∈ T-Aug(A ‖ B ‖ C)

In the above, again, we keep renaming to ternary parallel composition
silent. More interestingly, note that if e ∈ (A⊥ ‖ C)−, then λq′~q(e) =
{e}E. This resembles very much the annotation for the interaction of two
T-strategies (see lemma 2.3) but with a lighter writing as the two causally
compatible augmentations share the same set of variables. In fact, following
lemma 4.1, we have

Lemma 4.17. Let σ : S → A, τ : T → A⊥ be two concurrent strategies, and
let qxS ∈ Rig(σ), qxT ∈ Rig(τ) such that xT ~ xS ∈ C (T ~ S), then

(τ ~ σ).(λτ~σ)�xT~xS = λqxT ~qxS

Proof. From lemma 1.5 and lemma 4.1, (τ ~ σ)(xT ~ xS) = q
′~q as partial

orders The above follows by induction on <xT~xS

- if [(s, t)]xT~xS such that s ∈ S+ then (τ ~ σ)([(s, t)]xT~xS) =
e ∈ (A⊥ ‖ B)+ and λqxT ~qxS (e) = λqxS (e)[λqxT ~qxS ] =
λσ(s)[σ][λqxT ~qxS ] by definition. Then, by induction, this is equal
to λσ(s)[σ][(τ ~ σ).(λτ~σ)�xxT~xS ] = λσ(s)[Π−1

1 ][(λτ~σ)�xxT~xS ][τ ~ σ] =
(τ ~ σ).(λτ~σ)�xxT~xS (e);

- the same hold with λτ if [(s, t)]xT~xS such that t ∈ T+ as in that case
T~ S([(s, t)]xT~xS) = e′ ∈ (B⊥ ‖ C)+;
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- otherwise, T ~ S([(s, t)]xT~xS) = a ∈ (A⊥ ‖ C)− and by T-courtesy of
λqxS and λqxT , λqxT ~qxS (a) = {a}E = (T ~ S).(λτ~σ)�xxT~xS (a).

Having define interaction, we can now extend the construction to compo-
sition

Definition 4.24. Let q ∈ T-Aug(A⊥ ‖ B),q′ ∈ T-Aug(B⊥ ‖ C) be two
causally compatible T-courteous and T-receptive augmentations, their com-
position is q′ � q together with the annotation

λq′�q = (λq′~q)�A‖C

We have (q′ � q, λq′�q) ∈ T-Aug(A ‖ C), T-receptive and T-courteous.

That (q′ � q, λq′�q) has the properties claimed above is easily shown
following the inductive definition of λq′~q. This is essentially a recast of the
proof of lemma 2.3 so we skip it here.

Similarly, extending lemma 4.3, one can follow the proof of proposition 2.5
to inductively prove that:

Lemma 4.18. Let q1 � q
′
1 ∈ Aug(A⊥ ‖ B) and q2 � q

′
2 ∈ T-Aug(B⊥ ‖ C)

such that q1 = q
′
1, q2 = q

′
2 and q1,q2 are causally compatible, then q

′
1,q

′
2

are causally compatible and q2 � q1 � q
′
2 � q′1.

Global renaming The next step is to extend global (and local) renaming
that are used in both Strat and Det, in particular to define the tensor product
of strategies.

Definition 4.25. Let f : A ∼= A′ be an isomorphism of event structures and
let q ∈ T-Aug(A), the global renaming of q by f has underlying augmentation
f ∗ q, and labeling:

λf∗q = f.λq

where f : A ∼= A′ is regarded as a substitution.

It is clear that (f ∗ q, λf∗q) ∈ T-Aug(A′). Likewise,

Lemma 4.19. The global renamings on T-augmentations preserves T-
receptivity, T-courtesy and �.
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Given two T-augmentations q ∈ T-Aug(A⊥ ‖ C), q′ ∈ T-Aug(B⊥ ‖ D),
their tensor product is defined as previously by

q⊗ q = γ ∗ (q ‖ q′)

Similarly if q ∈ T-Aug(A⊥ ‖ B) and f : A ∼= A′ is an isomorphism then its
left renaming is still defined by

f · q = (f ‖ B) ∗ q ∈ T-Aug(A′⊥ ‖ B)

Prefixes We conclude this section by extending the notion of prefixes to
T-augmentations, this will be needed in the coming sections to define the
rigid T-strategies and the composition of elementary T-strategies.

Definition 4.26. Let q,q′ be two T-augmentations, we say that q is a prefix
of q′, written q ↪→ q

′, if it holds for the underlying augmentations, and that
for every a ∈ |q|

λq(a) = λq′(a)

Recall that the equality above is the equality on equivalence classes of ∼=E
in TmΣ([a]).

4.3.2 T-Rig
Based on the previous section, there is not much left in order to define a
category of games and rigid T-strategies, T-Rig. We set:

Definition 4.27. A rigid T-strategy on a game A is a non-empty and
prefix-closed set of T-courteous and T-receptive augmentations over A which
additionally satisfies receptivity, courtesy from definition 4.5. We write
σ : A T-Strat−−−−→ B for a rigid T-strategy σ : A⊥ ‖ B.

The partial order � on T-augmentations extends to T-strategies as in
definition 4.10.

Example 4.6. The rigid images of concurrent T-strategies are examples of
rigid T-strategies: for σ : S → A a concurrent T-strategy Rig(σ) is again
defined as

Rig(σ) = {qx | x ∈ C (S)} : A

Note that with rigid T-strategies, two events that map to the same move,
share the same causal history but have distinct annotations are distinguished
in the model. We say that a concurrent T-strategy σ : S → A is non-
deterministically idempotent if there is s 6= s′ in S such that σ(s) = σ(s′),
[s) = [s′) and λS(s) = λS(s′).
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Compact structure Composition and tensor product of rigid T-strategies
follow component-wise from their definitions on T-augmentations:

τ � σ = {q′ � q | q′ ∈ τ & q ∈ σ causally compatible}

σ ⊗ τ = {qσ ⊗ qτ | qσ ∈ σ,qτ ∈ τ}
By lemma 4.18 and lemma 4.19, using the same reasoning as in the plain
case, these operations preserve � on rigid T-strategies. Similarly, copycat
strategies and other structural morphisms are defined as the T-rigid images
of the corresponding concurrent T-strategies. In the next paragraphs we
check that the development in subsection 4.1.2 is still valid so we can state:

Theorem 4.3. Games and rigid T-strategies, together with �, (1,⊗) and
(_)⊥ form a compact closed category T-Strat that is order-enriched over �.

Primes To prove Theorem 4.3 we extend the proof of subsection 4.1.2 to
annotated strategies. We want to show:

T-CG
Rig

))
T-Strat

top
gg

with Rig ◦ top = id and top ◦ Rig acts as the identity (up to isomorphism)
on non-deterministically idempotent concurrent T-strategies, and the rest of
the argument for structure inheritance will be unchanged.

We first precise how the map top : Strat→ CG extends to T-strategies

top : T-Strat → T-CG
σ 7→ (Pr(σ), λPr(σ))

For the causal structure of Pr(σ), definition 4.11 is unchanged. However one
must keep in mind that now a prime augmentation qa does not only carry the
causal history of its top element a but also its annotation function. Similarly,
the condition for consistency now also implies that the annotations on the
augmentations of a consistent set are all equal (by definition of prefixes).
This helps in defining the annotation function of top(σ):

λtop(σ)(qa+) = λqa(a+)[Pr(qa)]

where Pr(qa) : qa ' [qa]Pr(σ) is the order-isomorphism defined by (a′ ∈
qa) 7→ ([a′]qa , λqa(a′)), that is (a′ ∈ qa) 7→ qa′ by definition of prefix.
Then, by T-courtesy of qa, we have that λtop(σ)(qa+) actually is an element
of T([qa]−Pr(σ)).

One can thus complete lemma 4.4 and see that:
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Lemma 4.20. For σ : A be a rigid T-strategy and x ∈ C (Pr(σ)) then

top(σ).(λtop(σ))�x = λqx

Proof. Let a ∈ qx, then top(σ)�[qa] is the inverse of Pr(qa) as defined above,
so (top(σ).λtop(σ))(a) = λqa(a). Furthermore a ∈ qx implies that qa ↪→ qx,
so by rigidity λqa(a) = λqx(a), concluding the proof.

As a consequence, corollary 4.1, stating that Rig(Pr(σ)) = σ, also holds
in the annotated case.

Similarly, following lemma 4.5, a simple check on the annotations show
that if σ : S → A is a concurrent T-strategy that validates non-deterministic
idempotence then top(Rig(σ)) ∼= σ. Indeed, the isomorphism of concurrent
strategies:

ϕ : S → Pr(Rig(σ))
s 7→ q[s] = qs

preserves labelling since for s ∈ S+,

λtop(Rig(σ))(qs) = λqs(σ(s))[Pr(qs)]
= λσ(s)[σ][Pr(qs)]
= λσ(s)[ϕ]

Functoriality of Rig and Rig ◦ top That Rig(τ � σ) = Rig(τ) � Rig(σ)
(lemma 4.8) extends to concurrent T-strategies, is immediate since the check
on annotations has already been done in lemma 4.17

Then, for Rig(σ ⊗ τ) = Rig(σ)⊗Rig(τ) (lemma 4.8), one needs to make
sure that given xS ⊗ xT ∈ C (S ‖ T ), the equality qxS⊗xT = qxS ⊗ qxT also
holds on annotations. This follows from the equalities:

λqxS⊗qxT = (σ ⊗ τ).(λσ⊗τ )�xS⊗xT
= (σ ⊗ τ).(λσ ‖ λτ )�xS‖xT
= (γ ◦ (σ ‖ τ)).((λσ)�xS ‖ (λτ )�xT )
= γ.(λqxS ‖ λqxT )

Finally, Rig preserves isomorphism on T-concurrent strategies by defini-
tion (hence extending lemma 4.6).

Conversely, for the functoriality of Rig ◦ top, the proof for composition
in the plain case (lemma 4.10) extends straightforwardly to T-annotations
since the check on annotations has already been done in lemma 4.20.
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For the preservation of tensor, extending lemma 4.9 amounts to checking
that the isomorphism

C (Pr(σ ⊗ τ)) ∼= C (Pr(σ))⊗ C (Pr(τ))
Pr(qσ ⊗ qτ ) 7→ Pr(qσ)⊗ Pr(qτ )

preserves annotations. This also follows from lemma 4.20 and checking that
λqσ⊗qτ = λqτ ⊗ λqσ which follows exactly the same argument as above.

With this last result, we are done with extending the structure of the
proof used in section 4.1.1 to T-augmentations and can state:

Theorem 4.4. Games and rigid T-strategies, together with �, (1,⊗) and
(_)⊥ form a compact closed category Strat. It is enriched over �

4.3.3 T-Det
As for rigid strategies, elementary strategies extend with T-annotations in a
smooth way.

Definition 4.28. An elementary T-strategy on an elementary game A is a
T-courteous and T-receptive augmentation σ = (|σ|,≤σ) ∈ T-Aug(A) that
also verifies receptivity and courtesy from definition 4.14.

We write σ : A T-Det−−−→ B for an elementary T-strategy σ : A⊥ ‖ B.

According to lemma 4.16, that relates annotations on T-courteous and T-
receptive augmentations with annotations on T-strategies, one can still view
elementary T-strategies as concurrent T-strategies through the identity-on-
events map of event structures.

This also implies that lemma 4.12 remains valid: if two elementary T-
strategies are isomorphic in T-CG then they are actually equal.

As previously, examples of elementary T-strategies are the copycat T-
strategies on elementary games or the unit and co-unit strategies ηA, νA.

Composition. Recall that the interaction of two elementary strategies σ :
A

Det−−→ B and τ : B Det−−→ C is given by

τ ~ σ = (σ ‖ C) ∧ (A ‖ τ) ∈ Aug(A ‖ B ‖ C)

By proposition 4.3 this also corresponds to the maximal interaction qτ ~ qσ
in Fat(σ) ~ Fat(τ). Following definition 4.23 and the fact that, by rigid
inclusion, (λσ)�qσ = λqσ and (λτ )�qτ = λqτ we simply set
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Definition 4.29. Let σ : A T-Det−−−→ B and τ : B T-Det−−−→ C be elementary
T-strategies, their interaction is τ ~ σ ∈ Aug(A ‖ B ‖ C) together with
annotations

λτ~σ : |τ ~ σ| → Tmσ(|τ ~ σ|)
e ∈ (A⊥ ‖ B+) 7→ λσ(e)[λτ~σ]
e′ ∈ (B− ‖ C) 7→ λτ (e′)[λτ~σ]

By lemma 4.16, this annotation is in line with the isomorphism of event
structures τ ~ σ ∼= τ ~CG σ proved in section 4.2. Hence, keeping τ � σ =
(τ~σ)↓(A‖C) for the composition of elementary T-strategies, the isomorphism
τ � σ ' τ �CG σ is preserved in T-CG, and we have

τ � σ ' τ �T-CG σ

for �T-CG the usual composition in T-CG.
Following the same reasoning as in section 4.2, T-Det thus inherits the

categorical structure of T-CG, hence:

Proposition 4.3. Elementary games and T-strategies define a category,
written T-Det.

Tensor The tensor product of two elementary T-strategies remains

σ ⊗ τ = γ ∗ (σ ‖ τ) : (A⊗B)⊥ ‖ (C ⊗D)

for σ : A T-Det−−−→ C, τ : B T-Det−−−→ D and γ : (A ‖ C) ‖ (B⊥ ‖ D) ∼= (A⊥ ‖ B⊥) ‖
(C ‖ D). Following lemma 4.19 the construction above is well-defined. Hence
one can replay the same trick as in section 4.2 to prove the bifunctoriality
of ⊗ and to define the structural strategies of the corresponding monoidal
structure from local renaming of copycats. Indeed, lemma 4.15, stating that
the renaming of an elementary strategy via an isomorphism f is isomorphic
in CG to that same strategy post-composed by f , extends straightforwardly
to elementary T-strategies.

Order enrichment The partial order � on T-augmentations from def-
inition 4.21 defines a partial order on elementary T-strategies. From
lemma 4.19, it is direct that ⊗ on elementary T-strategies preserves �. A
little more involved, the preservation of � by composition is inherited from
the order enrichment of Det (below theorem 4.2) and, by proposition 2.5,
following the correspondence between the composition in T-Det and the com-
position in T-CG.

In the end,
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Theorem 4.5. Elementary games and elementary T-strategies, together with
�, (1,⊗) and (_)⊥ form a compact closed category T-Det that is enriched
over �.

Note that this theorem is also a direct consequence of the categorical
structure of T-Strat (theorem 4.3) and of its correspondence with T-Det,
which is a straightforward extension of corollary 4.3 to T-annotations.





Part II

Term-strategies for Herbrand’s
theorem
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The search for a compositional Hebrand theorem.

In this part we present an extended version of the work carried out
in [ACHW18]. This work is about giving a compositional interpreta-
tion of the foundational theorem of Herbrand for first order classical
logic [Her30, Bus94].

In its simplest form, Herbrand’s theorem reduces the validity of a first-
order purely existential formula, ∃x.ϕ with ϕ quantifier free, to that of a
finite disjunction: ∃x.ϕ is valid iff one can find a finite collection of terms
t1, · · · , tn, such that ∨ϕ(ti) is a propositional tautology. These terms are
called Herbrand witnesses for the formula ∃x.ϕ. Although not discovered
this way, this simple form of Herbrand theorem is a direct consequence of
completeness and compactness.

Herbrand’s result can be extended to general formulas. A common way
to do so is by reduction to the purely existential case: a formula is converted
to prenex normal form, and universally quantified variables are replaced with
new function symbols added to the signature of the theory, in a process called
Herbrandization [Bus94] (dual to Skolemization).

However, Herbrand witnesses obtained this way are not composable: in
general, given witnesses for ` A and ` A =⇒ B there is a priori no direct
way to deduce witnesses for ` B [Koh99]. Understanding how the data
of these witnesses can be elaborated to allow such a composition has thus
become ) has thus become a question of interest in proof theory, in particular
as a way to design alternative proof formalism [Hei10, McK13, HW13].

Indirectly, proof mining techniques such as functional interpretations pro-
vide a way to extract Herbrand witnesses compositionally [GK05]. Although
they interpret cuts in proofs (and are compositional in essence), functional
interpretations make no pretence to be faithful to the structure of proofs as
encapsulated in classical sequent calculus: they explore in a sequential order
terms proposed by a proof as witnesses for existential quantifiers, but this
order is certainly not intrinsic to the proof. From a proof-theoretic perspec-
tive – and closer to the original spirit of Herbrand’s theorem –, it is thus
natural to seek a compositional form of Herbrand’s Theorem faithful to the
structure of proofs and to the dependencies between terms.

For cut-free proofs, Miller’s expansion trees [Mil87] – a modern view on
Hebrand witnesses – capture precisely this “Herbrand content” (the infor-
mation pertaining to quantifier instantiations), but, as the original Herbrand
witnesses, they lack compositionality. Yet, in an other approach to the for-
mer question, recent works have sought generalisations of these trees that
support cuts. These include Heijltjes’ proof forests [Hei10], McKinley’s Her-
brand nets [McK13], and Hetzl and Weller’s more recent expansion trees with
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cuts [HW13]. In all three cases, a generalisation of expansion trees allowing
explicit cuts is given along with a weakly normalising cut reduction proce-
dure, proved correct via syntactic means.

In spirit, our work is close to this recent line of work but with a major
shift of perspective: by making explicit the game-theoretic ideas that under-
lies the literature on expansion trees, we approach the problem of finding
a a compositional structure for them semantically rather than syntactically.
More precisely, we embed expansion trees in the realm of elementary Σ-
strategies, which are by design compositional, and compute them by directly
interpreting first order classical proofs in this game model.

Beyond the term information, the key ingredient of this model is the
causal structure of strategies that allows us to represent transparently the
dependencies between quantifiers implicitly carried by sequent proofs. Were
we interested only in cut-free sequent calculus our strategies would essentially
be Miller’s expansion trees, but enriched with explicit acyclicity witnesses.
This additional data makes the process of composition easier.

Related work This work fits in the longstanding active topic of the com-
putational content of classical logic, with a wealth of related works.

Roughly speaking, there are two families of approaches on that matter.
On the one hand, some (including the functional interpretations mentioned
above) extract from proofs a sequential procedure, e.g. via translation to
sequential calculi or by annotating a proof to sequentialize or determinize
its behaviour under cut reduction [Gir91, DJS97]. Other than that cited
above, influential developments in this “polarized” approach include work
by Berardi [BB94], Coquand [Coq95], Parigot [Par92], Krivine [Kri09], and
others. Polarization yields better-behaved dynamics and a non-degenerate
equational theory but distorts the intent of the proof by an added unintended
sequentiality: two proofs that differ only by the order of introduction of two
consecutive existential quantifiers will be distinguished in those models. On
the game-theoretic front of this line of work, our model is closely related to
Laurent’s model for the first-order λµ-calculus [Lau10] and also related to
Mimram’s categorical construction of a games model for a linear first-order
logic without propositional connectives [Mim11].

On the other hand, some works avoid polarization – including, of course,
Gentzen’s Hauptsatz [Gen35]. This causes issues, notably unrestricted cut
reduction yields a degenerate equational theory [Gir91] and enjoys only weak,
rather than strong, normalization [DJS97]. Nevertheless, witness extraction
remains possible (though it is non-deterministic). Particularly relevant to
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our endeavour is the recent activity around the matter of enriching expansion
trees so as to support cuts as mentioned above [Hei10, McK13, HW13].

Outline In chapter 5 we recall first order logic, Herbrand’s theorem and
expansion trees. We also introduce the precise game models in which expan-
sion trees can be presented as Σ-strategies – a model in which games have
winning conditions –, leading to a first reformulation of Herbrand theorem.

The two other chapters describe the interpretation of first order proofs as
winning strategies: In chapter 6 we give the interpretation of propositional
multiplicative linear logic (MLL) by exhibiting a ∗-autonomous structure in
our model, then deal with linear quantifiers, yielding a lax model of first
order MLL. In chapter 7 we add contraction and weakening and complete
the interpretation of LK. From this we derive our compositional version of
Herbrand’s theorem and discuss some of the computational features of the
LK sequent calculus reflected in our model.





Chapter 5

From Herbrand proofs to
winning strategies

“What more do we know when we have proved a theorem by
restricted means than if we merely know it is true?”

Kreisel’s question is the driving force for much modern Proof Theory. It is
especially critical for first order classical logic which, contrary to intuitionistic
logic is known to be non-constructive. In particular, classical logic fails to
have the witness property: if ∃xϕ holds then one might not be able to give
a single term t such that ϕ(t) holds. Consider the formula

∃x (P(x) =⇒ P(f(x))) (5.1)

it is valid (provided the language has some constant symbol c), but there is
no first-order term t such that P (t) =⇒ P (f(t)) holds.

In his thesis however [Her30], Herbrand proved that, although no single
closed term can serve as a witness of a formula ∃xϕ(x) (with ϕ quantifier-
free), there always exists finitely many terms t1, . . . , tn such that ϕ(t1) ∨
· · · ∨ ϕ(tn) holds. The single witness is replaced with a finite disjunction
and the extraction of such tis is widely regarded as an early account of the
computational content of classical proofs.

Before going any further on this statement, we remind some basics on
first order classical logic and set notations. A reader familiar with this topic
may move directly to the next two sections in which we further introduce
Herbrand’s theorem, giving its general form via expansion trees, and then
present how these trees can be viewed as concurrent strategies in the frame-
work of elementary games and Σ-strategies.

5.1 Preliminaries on LK1

5.1.1 First order classical formulas
First order formulas are syntactic objects defined from: a first order signature
Σ as defined in section 2.1.1 – for simplicity we will furthermore assume that
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it contains at least one constant symbol c –; a countable set of predicate
symbols (ranging over P,Q, etc.) which also come equipped with an arity
n ∈ N; and the usual propositional constant, connectives and first order
quantifiers which we shall soon recall.

Letting V be a set of variable names, the atomic formulas over V corre-
spond to the propositional constants > (true) and ⊥ (false) together with
literals:

Definition 5.1. A literal with free variables in V has the form P(t1, . . . , tn)
or ¬P(t1, . . . , tn), where P is a n-ary predicate symbol and ti ∈ TmΣ(V).

We denote the set of literals with free variables in V by LitΣ(V).

In our model construction, we will use infinitary quantifier-free formu-
las, that are, atomic formulas closed under countable conjunction (∧) and
disjunction (∨). We introduce them together with their finitary version:

Definition 5.2. The infinitary quantifier-free formulae with variables in V
are given by the grammar below.

ϕ, ψ ::= P(t1, . . . , tn) | ¬P(t1, . . . , tn) (∈ LitΣ(V))
⊥ | > | ∧i∈I ϕi | ∨i∈I ψi

where I is any at most countable set.
We write QF∞Σ (V ) for the set of infinitary quantifier-free formulas on set

of variables V and QFΣ(V) for the corresponding set of finite formulas, where
all disjunctions and conjunctions are finite.

Finally, first order formulas are quantifier free formulas closed under ex-
istential, ∃, and universal, ∀, quantifiers:

Definition 5.3. The set of first-order formulas with variable in V , written
FormΣ(V) is generated by:

ϕ, ψ ∈ FormΣ(V) ::= �x. ϕ (� ∈ {∀,∃}, ϕ ∈ FormΣ(V ∪ {x}))
| ϕ (∈ QFΣ(V))

Formulas are considered up to α-conversion and assumed to satisfy Baren-
dregt’s convention (i.e. all bound variables are chosen to be different from
the free variables).

Given a substitution γ : V1
Σ→ V2, the substitution defined on terms

extends to formulas with capture avoidance implicitly handle by Barendregt’s
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convention:

⊥[γ] = ⊥
>[γ] = >

(ϕ ∧ ψ)[γ] = ϕ[γ] ∧ ψ[γ]
(ϕ ∨ ψ)[γ] = ϕ[γ] ∨ ψ[γ]

(P (t1, . . . , tn))[γ] = P (t1[γ], . . . , tn[γ])
(¬P (t1, . . . , tn))[γ] = ¬P (t1[γ], . . . , tn[γ])

(∀x. ϕ)[γ] = ∀y. ϕ[y/x][γ]
(∃x. ϕ)[γ] = ∃y. ϕ[y/x][γ]

Finally, the logical negation is not considered a logical connective: the
negation ϕ⊥ of ϕ is obtained by induction on formulas following the De
Morgan rules:

⊥⊥ = >
>⊥ = ⊥

(ϕ ∧ ψ)⊥ = ϕ⊥ ∨ ψ⊥
(ϕ ∨ ψ)⊥ = ϕ⊥ ∧ ψ⊥

(P (t1, . . . , tn))⊥ = ¬P (t1, . . . , tn)
(¬P (t1, . . . , tn))⊥ = P (t1, . . . , tn)

(∀x. ϕ)⊥ = ∃x. ϕ⊥
(∃x. ϕ)⊥ = ∀x. ϕ⊥

As it does not affect the binding structure, it is clear that the negation of a
formula is a formula. Similarly, the logical implication ϕ =⇒ ψ used in the
introduction is not a proper connective, but rather a shortening for ϕ⊥ ∨ ψ.

Validity. The above definitions for negation and implication follow from
the formal Tarskian semantics on classical formulas, which we briefly recall.
First, one need to choose a model, that is, a Σ-algebra (D, J−K) (see definition
p 57) together with an interpretation JPK : Dn → {⊥,>} for every predicate
P of arity n. Then,

Definition 5.4. For ϕ ∈ FormΣ(V) and ρ ∈ DV is a V-valuation, the eval-
uation of ϕ following the (D, ρ)-Tarskian semantics, written JϕKρD, is given
by:

J>KρD = >
J⊥KρD = ⊥

JP(t1, . . . , tn)KρD = JPK(Jt1Kρ, . . . , JtnKρ))
J¬P(t1, . . . , tn)KρD = ¬JPK(Jt1Kρ, . . . , JtnKρ))
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Jϕ ∧ ψKρD =
{
> if JϕKρD = JψKρD = >
⊥ otherwise

Jϕ ∨ ψKD =
{
⊥ if JϕKρD = JψKρD = ⊥
> otherwise

J∀x.ϕKρD =
{
> if for all d ∈ D JϕKρ]x 7→dD = >
⊥ otherwise

J∃x.ϕKD =
{
> if for some d ∈ D, JϕKρ]x 7→dD = >
⊥ otherwise

This valuation is also defined on infinitary quantifier-free formulas, keep-
ing the first four lines and setting

J
∧
i∈I ϕiK

ρ
D =

{
> if for all i ∈ I, JϕiKρD = >
⊥ otherwise

J
∨
i∈I ϕiK

ρ
D =

{
> if for some i ∈ I, JϕiKρD = >
⊥ otherwise

for the valuation of countable conjunction and disjunction. It is worth notic-
ing that, these are very close to the respective universal and existential val-
uations.

Using the above semantics, we can define tautologies:

Definition 5.5. Let ϕ ∈ Form(V), we say that ϕ is a tautology iff for all
model D and V-valuation ρ ∈ DV , we have JϕKρD = >. And similarly for
ϕ ∈ QF∞Σ (V) a (potentially) infinite quantifier-free formula.

We write |= ϕ to indicate that ϕ is a tautology.

One foundational theorem in proof theory is Gödel completeness the-
orem that establishes a correspondence between finite classical tautologies
and provable formulas in the classical sequent calculus LK1 which we now
describe.

5.1.2 Classical sequent calculus
The sequent calculus has been introduced by Gentzen [Gen35] as a formal
way to describe mathematical proofs.

A sequent is a judgment of the form

`V ϕ1, . . . , ϕn

with, for all 1 ≤ i ≤ n, ϕi ∈ FormΣ(V). Note that unlike what is commonly
done in proof theory, we keep track explicitly of the available free variables
in the sequent. In particular, we will be unable to instantiate existential
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V-MLL

Ax
`V ϕ⊥, ϕ

fv(ϕ) ⊆ V Cut
`V Γ, ϕ `V ϕ⊥,∆

`V Γ,∆

Ex
`V Γ, ϕ, ψ,∆
`V Γ, ψ, ϕ,∆

>I
`V >

⊥I
`V Γ
`V Γ,⊥

∧I
`V Γ, ϕ `V ψ,∆
`V Γ, ϕ ∧ ψ,∆

∨I
`V Γ, ϕ, ψ,∆
`V Γ, ϕ ∨ ψ,∆

First-order MLL (MLL1)

∀I
`V]{x} Γ, ϕ
`V Γ,∀x. ϕ

x 6∈ fv(Γ)

∃I
`V Γ, ϕ[t/x]
`V Γ, ∃x. ϕ

t ∈ TmΣ(V)

LK1

C
`V Γ, ϕ, ϕ
`V Γ, ϕ

W
`V Γ
`V Γ, ϕ

Figure 5.1: Rules for the sequent calculus LK1

quantifiers using witnesses with free variables not in V . This restriction
will not impact the power of the general calculus but will provide useful
information when seeking a denotation of proofs in our games model.

We will simply write ` Γ for `∅ Γ.

Proofs. The proofs are inductively defined using the derivation rules listed
on figure 5.1. Apart from the explicit set V of free variables, these define a
rather standard one-sided sequent calculus with rules presented in the mul-
tiplicative style.

Note that instead of the usual presentation of rules into the four Identity
(Ax,Cut), Structural (C, W, Ex), Propositional (>I, ∧I, ∨I), and Quan-
tifier (∀I, ∃I) groups, we chose to organise rules according to the various
proof systems they define: the whole system corresponds to LK1; removing
the contraction, C, and weakening, W, yields MLL1, the proof system for
first order multiplicative linear logic (although the present ∧ and ∨ are then
usually denoted ⊗ and `); finally, removing the two quantifier introduction
rules, ∀I and ∃I, leads to V-MLL, the multiplicative linear logic on QFΣ(V).
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`{y} P(y),¬P(y)
Ax

`{y} ¬P(s),P(y),¬P(y), (∀z.P(z))
W

`{y} ¬P(s),P(y),¬P(y) ∨ (∀z.P(z))
∨I

`{y} ¬P(s),P(y), ∃x.¬P(x) ∨ (∀y.P(y))
∃I , x := y

` ¬P(s),∀y.P(y),∃x.¬P(x) ∨ (∀y.P(y))
∀I

` ¬P(s) ∨ (∀y.P(y)), ∃x.¬P(x) ∨ (∀y.P(y))
∨I

` ∃x.¬P(x) ∨ (∀y.P(y)), ∃x.¬P(x) ∨ (∀y.P(y))
∃I , x := c

` ∃x.¬P(x) ∨ (∀y.P(y))
C

Figure 5.2: A classical proof for DF

We do not expand further on these systems for now but they will provide us
with an incremental way of interpreting LK1 in our games model.

Figure 5.2 presents a proof derivation for a typical classical first order
formula named the drinker’s formula or the drinker’s paradox

∃x. P (x) =⇒ (∀y. P (y))

so called as its logical meaning can be illustrated as follows: in a non empty
room, we can always find someone (x) such that if that person is drinking
(P (x)) then everybody else is drinking as well (∀y.P (y)). Note that when
representing proofs, we will in general keep implicit the uses of the exchange
rule (Ex). However, it is important in the interpretation to keep in mind
that contexts really are lists of formulas rather than sets or multisets, and
that formally the exchange rule has to be explicitly used.

Similarly, we will implicitly make use of the following admissible rule on
free variables when writing down proof trees:

W-Var
`V Γ
`V]{x} Γ

Yet, in the interpretation, this weakening rule will be explicitly shown.
We say that a sequent `V Γ is provable if one can find a proof derivation

that ends on `V Γ. Similarly, we say that a formula ϕ ∈ Form(V) is provable
if `V ϕ is provable. As mentioned earlier Gödel completeness theorem states:

Theorem 5.1. For any closed formula ϕ, |= ϕ iff ϕ it is provable in LK1.
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Cut
∀I

π1

`V]{x} Γ, ϕ
`V Γ,∀x. ϕ

∃I

π2

`V ϕ⊥[t/x],∆
`V ∃x. ϕ⊥,∆

`V Γ,∆
 ∀/∃ Cut

π1[t/x]
`V Γ, ϕ[t/x]

π2

`V ϕ⊥[t/x],∆
`V Γ,∆

Cut

π1

`V Γ, ψ
∀I

π2

`V]{x} ψ⊥,∆, ϕ
`V ψ⊥,∆, ∀x. ϕ

`V Γ,∆,∀x. ϕ
 Cut/∀

Cut

π1

`V]{x} Γ, ψ
π2

`V]{x} ψ⊥,∆, ϕ

∀I
`V]{x} Γ,∆, ϕ
`V Γ,∆,∀x. ϕ

Cut

π1

`V Γ, ψ
∃I

π2

`V ψ⊥,∆, ϕ[t/x]
`V ψ⊥,∆,∃x. ϕ

`V Γ,∆,∃x. ϕ
 Cut/∃

Cut

π1

`V Γ, ψ
π2

`V ψ⊥,∆, ϕ[t/x]

∃I
`V Γ,∆, ϕ[t/x]
`V Γ,∆,∃x. ϕ

Figure 5.3: Additional cut elimination rules for MLL1

Cut reduction In LK1 as in MLL(1), the Cut rule is admissible, meaning
that the set of provable formulas in the systems with and without Cut are
the same (the set of proofs for these formulas of course differ). In other words
the above theorem can be rephrased as follows

Theorem 5.2. For any closed formula ϕ, |= ϕ iff ϕ it has a cut-free proof
in LK.

Usually, such a theorem is proved by inductively eliminating cuts from a
given proof, following a cut reduction procedure. The following theorem, on
cut reduction for MLL, is folklore.

Theorem 5.3. There is a set of reduction rules on MLL sequent proofs,
written  MLL, such that for any proof π of a sequent ` Γ, there is a cut-free
π′ of Γ such that π  ∗MLL π

′.

The reduction MLL comprises logical reductions, reducing a cut on a for-
mula ϕ/ϕ⊥, between two proofs starting with the introduction rule for the
main connective of ϕ/ϕ⊥; and structural reductions, consisting in commuta-
tions between rules so as to reach the logical steps. We do not detail these
reductions further as we will not explicitly study them in the sequel. Instead,
we depict on figure 5.3 the additional reduction rules for MLL1: a new logical
reduction (∀/∃), and two structural reductions for the propagation of cuts
past introduction rules for ∀ and ∃.
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Note that the first rule of figure 5.3 requires the introduction of substi-
tution on proofs: given a proof π for `V2 Γ and a substitution γ : V1 → V2,
we set π[γ] to be a proof of `V1 Γ[γ] by applying γ on every formulas and
terms in π, propagating it by structural induction. A degenerate case of
proof substitution is the substitution of a proof π for `V Γ by the weakening
wV,x : V ] {x} → V , leading to π1[wV,x], a proof for `V]x Γ. As this leaves
the formulas and terms unchanged we leave it implicit in the reduction rules
– it is used for instance implicitly in the commutation Cut/∀.

Writing π  MLL1 π
′ for the reduction obtained with the rules from fig-

ure 5.3 together with  MLL, the previous theorem extends to:

Theorem 5.4 ([Gir87]). Let π be any MLL1 proof of `V Γ. Then, there is a
cut-free proof π′ of `V Γ s.t. π  ∗MLL1 π

′.

The classical sequent calculus LK1 also admits a set of cut reduction
rules. These are the one of MLL1 together with the two “logical” reductions
(W, C) and the two structural reductions (W/Cut,C/Cut) depicted on
figure 5.4. Writing π  LK1 π

′ for the reduction obtained with these rules we
again have:

Theorem 5.5. Let π be any LK1 proof of `V Γ. Then, there is a cut-free
proof π′ of `V Γ s.t. π  ∗LK1 π

′.

Through the Curry-Howard correspondence, proofs reductions can be
viewed as computations leading to normal forms, i.e. cut-free proofs. The
cornerstone of this correspondence is to consider cuts as function applications
in a typed programming language.

For MLL(1), the reduction rules define a confluent and strongly normalis-
ing rewriting system, making it suitable to work with as a calculus. However,
this is not the case of  LK1 . A typical example of non-confluence is the so
called Lafont critical pair:

π1

` Γ
` Γ, A

W

π2

` Γ
` A⊥,Γ

W

` Γ,Γ
Γ

C
Cut
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Cut
W

π1

`V ]Γ
`V Γ, ϕ

π2

`V ϕ⊥,∆
`V Γ,∆

 W W
W

π1

`V Γ
. . .

`V Γ,∆

Cut
C

π1

`V Γ, ϕ, ϕ
`V Γ, ϕ

π2

`V ϕ⊥,∆
`V Γ,∆

 C

Cut
Cut

π1

`V Γ, ϕ, ϕ
π2

`V ϕ⊥,∆
`V Γ,∆, ϕ

π2

`V ϕ⊥,∆

C
C
`V Γ,∆,∆

. . .

`V Γ,∆

Cut

π1

`V Γ, ψ
W

π2

`V ψ⊥,∆
`V ψ⊥,∆, ϕ

`V Γ,∆, ϕ
 W/Cut

Cut

π1

`V Γ, ψ
π2

`V ψ⊥,∆

W
`V Γ,∆
`V Γ,∆, ϕ

Cut

π1

`V Γ, ψ
C

π2

`V ψ⊥,∆, ϕ, ϕ
`V ψ⊥,∆, ϕ

`V Γ,∆, ϕ
 C/Cut

Cut

π1

`V Γ, ψ
π2

`V ψ⊥,∆, ϕ, ϕ

C
`V Γ,∆, ϕ, ϕ
`V Γ,∆, ϕ

Figure 5.4: Additional cut elimination rules for LK1
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` D(f(c)), ¬D(f(c))
` ¬D(c),D(f(c)), ¬D(f(c)),D(f(f(c)))
` ¬D(c) ∨ D(f(c)), ¬D(f(c)) ∨ D(f(f(c)))
` ¬D(c) ∨ D(f(c)), ∃x ¬D(x) ∨ D(f(x))
` ∃x ¬D(x) ∨ D(f(x)), ∃x ¬D(x) ∨ D(f(x))

` ∃x ¬D(x) ∨ D(f(x))
C
∃I , x := c
∃I , x := f(c)
∨I,∨I
W,W
Ax

Figure 5.5: Classical proof for a purely existential formula

which reduces to both of the following proofs (for ∼ some structural equiva-
lence that we will not precise here):

π1

` Γ
` Γ,Γ

Γ
C

wk ∼
π1

` Γ

π2

` Γ
` Γ,Γ

Γ
C

wk ∼
π2

` Γ

hence equalizing any two proofs of the same formulas. The equational the-
ory obtained by transitive and reflexive closure of  LK1 thus collapses to a
Boolean algebra, not a very expressive semantics for whoever wants to do
programming!

5.2 Herbrand’s theorem
As mentioned in the introduction, Herbrand’s theorem in its simpler formu-
lation relates the validity of a purely existential formula, to the existence of
a finite set of witnesses – that are closed terms over the signature – such
that the finite disjunction obtained by instantiating the formula with this
collection of terms is a tautology.

Figure 5.5 depicts a proof of the formula from example 5.1. Collecting all
the terms used in the proof one may extract the following valid disjunction

(P(c) =⇒ P(f(c))) ∨ (P(f(c)) =⇒ P(f(f(c))))

where the existential quantifier has been instantiated with two witnesses c
and f(c). We call the disjunction above a Herbrand disjunction and c and
f(c) its witnesses.
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It is quite clear that this extraction procedure can be performed on any
cut free proof of a valid ∃-formula, and, conversely, that every such disjunc-
tion for an ∃-formula can be transformed into a cut free proof. This is the
simple version of Herbrand’s theorem:

Theorem 5.6. Consider a formula of the form ψ = ∃x1 . . . ∃xnϕ(x1, . . . , xn)
where ϕ is quantifier free. Then, |= ψ iff there are closed terms
(ti,j)1≤i≤p,1≤j≤n such that

|=
p∨
i=1

ϕ(ti,1, . . . , ti,n)

5.2.1 Herbrand proofs
It is possible to give a generalised version of the theorem above that fits
for any kind of formulas. A common way to do so is by reduction to the
purely existential case: a formula ϕ is converted to prenex normal form
and universally quantified variables are replaced with new function symbols
added to Σ, in a process called Herbrandization (dual to Skolemization). For
instance, the drinker’s formula:

∃x∀y¬P (x) ∨ P (y) (DF)

yields by Herbrandization the formula ψ of Example 5.1.
An alternative way – to avoid distortion of the formulas by Herbrandiza-

tion – is to use more complex structures than just mere sets of terms to
extract witnesses. This is necessary e.g. to handle the fact that the existen-
tial witnesses in the proofs of general first order formulas may depend on
universally quantified variables in those formulas. As an example, one can
look at the shape of witnesses in the proof of the DF formula depicted in
figure 5.2.

Generalising disjunctions to a richer structure suited for any first order
formulas is the way chosen by Herbrand in his original work. Roughly speak-
ing, he introduced a notion of Herbrand proof able to draw a formal cor-
respondence between valid formulas and the propositional tautologies that
appear in their cut-free proofs. This lead to:

Theorem 5.7. For any closed formula ϕ, |= ϕ iff ϕ has an Herbrand proof.

We do not detail this original formalism further here, but rather refer
the interested reader to [Bus94] for a complete overview. In the next section
however we introduce expansion trees, a modern presentation of Herbrand
proofs proposed by Miller in [Mil87]. Expansion trees have the advantage of
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∃x∀y (¬P(x) ∨ P(y))
x:=c x:=y

∀y (¬P(c) ∨ P(y))
y

∀z (¬P(y) ∨ P(z))
z

¬P(c) ∨ P(y) ¬P(y) ∨ P(z)

Figure 5.6: An expansion tree for DF

being more concise and geometric than the original Herbrand proofs, and of
having a game semantical flavour. Still, they enjoy the same property:

Theorem 5.8 ([Mil87]). For any closed formula ϕ, |= ϕ iff ϕ has an expan-
sion tree.

5.2.2 Expansion trees.
As expressed in theorem 5.8, expansion trees are tree structures that wit-
ness the validity of classical first order formulas in a way that is close to the
structure of the assignment of first-order terms to existential quantifiers, and
the causal dependency between quantifiers in (cut-free) proofs of the classical
sequent calculus. In this section we do not give a formal definition of expan-
sion trees, instead we introduce them through a game metaphor reminiscent
of Coquand’s backtracking games for classical arithmetic [Coq95]. This will
motivate our own game interpretation of first order classical proofs.

Tree structure On figure 5.6, we depict an expansion tree for DF . This
tree is rooted in DF and may be read from top to bottom, and from left
to right as a game between two players, ∃loïse and ∀bélard, that debate the
validity of DF. The rules of the game are as follows: on a formula ∀xϕ, it is
∀bélard’s turn to play, he must provide a fresh variable x before the game
keeps going on ϕ; on ∃xϕ, it is ∃loïse’s turn to play, she must provide a term t
that possibly contains variables previously introduced by ∀bélard, once done,
the game keeps going on ϕ[t/x].

On figure 5.6, ∃loïse opens the game and plays c. Then, ∀bélard intro-
duces y, and we reach a position from which neither ∃loïse nor ∀bélard can
play anymore – this is a leaf of the tree, a quantifier free formulas.
∃loïse, though, has a special power: at any time she can backtrack to a

previous existential position and provide a new witness for it – still having ac-
cess to the variables played by ∀bélard in between. On figure 5.6, ∃loïse uses
this power to backtrack after ∀bélard’s move (we jump to the right branch)
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and plays y. At last ∀bélard introduces z and this is a win for ∃loïse: the
leaves of the tree define a propositional tautology

(¬P(c) ∨ P(y)) ∨ (¬P(y) ∨ P(z))

Validity criterion In the above example, ∃loïse wins: the disjunction of
the leaves is a tautology. More generally, every expansion tree defines a quan-
tifier free formula 1 obtained by collecting every of the subformulas explored
during the game. This is called the deep formula of the expansion tree (as
opposed to the formula being proved, referred to as the shallow formula in
the definition of expansion trees) and is used to referee the game/check that
the tree is correct: an expansion tree is valid/ a win for ∃loïse if its deep
formula is a propositional tautology.

Acyclicity criterion The game metaphor however has limits: it suggests
a sequential ordering between branches which expansion trees do not have
in reality; they only carry an implicit partial ordering, corresponding to
the transitive closure of the structure of the tree together with the variable
dependencies of the term annotations. Yet, this ordering is crucial to ensure
correctness of the trees. Certainly the tree below should not be valid as the
formula at its root is invalid.

∃x1∀y1P(x1, y1) ∨ ∃x2∀y2¬P(y2, x2)

∃x1∀y1P(x1, y1)
x1:=y2

∃x2∀y2¬P(y2, x2)
x2:=y1

∀y1P(y2, y1)
y1

∀y2¬P(y2, y1)
y2

P(y2, y1) ¬P(y2, y1)

And indeed, the full definition of expansion trees involves a correctness
criterion that forbids this: the causal relation on nodes resulting from the
tree structure and its labelling must be acyclic. This acyclicity entails the
existence of a sequentialization, but committing to one is an arbitrary choice
of the above metaphor that is not forced by the proof.

As we will see next, in our representations of proofs (called winning (Σ-
)strategies), the causal relation on nodes will be made explicit as a partial
order. For instance, we display in figure 5.7 the winning Σ-strategy matching,

1 In comparison with the original definition [Mil87], here expansion trees are considered
in their expanded version, meaning that every leaf is a quantifier free formula. This is
closer to e.g. Hetzl and Weller’s expansion trees with cuts [HW13].
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∃c

_���

∃y
_���

∀y
; 88C

∀z

Figure 5.7: A winning Σ-strategy for DF

∀x1
_���

� %%,

∀x2
+rry _���

∃f(x2,x1) ∃x1

Figure 5.8: A partially ordered winning Σ-strategy

in our framework, the expansion tree for DF . Another winning Σ-strategy,
displayed in figure 5.8, illustrates that this order is not always naturally
sequential.

This explicit partial order will in fact lead to a change of perspective on
expansion trees: rather than derived afterwards, this order will be consider
primitive, and only later decorated with term annotations. Our strategies
will thus be more informative than expansion trees and make the acyclicity
correctness criterion redundant. This extra information will also help in
making expansion trees compositional.

5.3 Games for Herbrand’s theorem

5.3.1 Expansion Trees as Winning Σ-Strategies
This section presents our formulation of expansion trees as (elementary) Σ-
strategies as introduced in section 2.1.2 and 4.3.3. Although our definitions
look superficially different from Miller’s, the only fundamental difference
will be the explicit display of the dependency between quantifiers of par-
allel branches.

Trees as Σ-strategies In our interpretation, Σ-strategies will only have
events either “∀ events” or “∃ events”. Other connectives will not be reflected
as moves in the strategies. This is a choice in our semantic to emphasize the
role of quantifiers and dependencies between them. Still, we will see later
that the propositional connectives are reflected in the structure of our games.
Moreover, there is no notion of non-determinism in expansion trees, so our
model will be restricted to elementary Σ-strategies.
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Figure 5.7 shows the representation as an elementary Σ-strategy of the
tree depicted in figure 5.6. Note that here, ∀ events are annotated with
fresh variables different from their own name, as one could have expect from
definition 4.22. This is just a choice of presentation for readability but the
actual definition is unchanged. Let us comment on the relation between
expansion trees and elementary Σ-strategies.

First of all, note that events in Σ-strategies carry terms, the same way as
do universal and existential branches in expansion trees: fresh variables on
∀ moves, (possibly open) terms on ∃ moves. The definition of Σ-strategies
however ensures that these terms respect the explicit causal dependency be-
tween quantifiers as the only possible free variables are the ones associated
with ∀ moves in their causal history. In that sense, Σ-strategies are more
general than expansion trees: they have an explicit causal order, and this
partial order may be more constraining than the one given by the terms. To
capture this difference, we will distinguish minimal strategies from others:
Definition 5.6. A elementary Σ-strategy σ : A is minimal if whenever
a1 _σ a

+
2 such that a1 6∈ fv(λσ(a2)), then a1 _A a2 as well.

In a minimal Σ-strategy σ : A, the ordering ≤σ is actually redundant and
can be uniquely recovered from λσ and ≤A.

Formulas as games Σ-strategies will account for first-order proofs, and as
such, will play on games representing formulas. In this chapter we give a first
interpretation of formulas as games noted J−K∃. The existential in superscript
emphasizes that in this interpretation, games will be biased towards ∃loïse.
Let us make this more precise.

Interpreted formulas will be elementary games: their moves will corre-
spond to the ∀ and ∃ quantifiers of formulas, partially ordered according to
the syntactic structure of these formulas. Every ∀ moves will have − polarity
(∀bélard is the Opponent), while ∃ moves will have + polarity (∃loïse is the
Player). For this reason, we will often drop the polarity information on ∀
and ∃ moves.

Similarly to expansion trees where only ∃loïse can replicate her moves
(“backtrack” – although the terminology is imperfect when strategies are not
sequential), games corresponding to formulas in our interpretation will at
first be biased towards ∃loïse: each ∃ move will exist in as many copies as
she might desire, whereas ∀ events will not be copied a priori.

Figure 5.9 shows the ∃-biased game JDF K∃ for DF . Although only
∃loïse can replicate her moves, the universal quantifier is also copied as it
depends on the existential quantifier. One can check that the strategy de-
picted on the right of figure 5.7 is a strategy for the game on figure 5.9 – in
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∃1 . . . ∃n . . .

∀1 ∀n

Figure 5.9: The elementary game JDF K∃

fact, in figure 5.7 we also display via dotted lines the immediate dependency
of the game.

Note that the receptivity and courtesy conditions on strategies, are consis-
tent with the informal game semantics described in the previous section: re-
ceptivity means that ∃loïse cannot refuse to acknowledge a move by ∀bélard,
and courtesy that the only new causal constraints that she can enforce with
respect to the game is that some existential quantifiers depend on some uni-
versal quantifiers.

Winning conditions In order for the model to be able to discriminate
valid from invalid strategies, we need to adjoin winning conditions to our
usual games and define winning Σ-strategies. In our interpretation of for-
mulas as games, winning conditions will realise the validity criterion on ex-
pansion trees. For that, we decorrelate the syntactic structure of the deep
formulas of expansion trees from their instantiation with ∃loïse’s witnesses
and ∀bélard’s variables. These “non-instantiated” formulas will be associated
with the configurations of the game, while the instantiation will be performed
at the level of strategies to check their correctness. We set:

Definition 5.7. A win-game is A = (A,WA) where A is an elementary game
and WA defines the winning conditions on A:

WA : (x ∈ C∞(A))→ QF∞Σ (x),

for C∞(A) the set of infinite configurations of A, that is, the set of (possibly
infinite) down-closed subsets x ⊆ A such that for every finite x′ ⊆ x, x′ ∈
ConA.

In the above, winning conditions are defined on both finite and infinite
configurations as our interpretation of formulas will lead to define infinite
games, on which strategies may as well be infinite. We also insist on the fact
that winning conditions are syntactic objects: there is no valuation attached
to them.

A first example of interpretation are the propositional constants and
closed literals (i.e. ϕ ∈ {P(t1, . . . , tn),¬P(t1, . . . , tn)} with ti ∈ TmΣ(∅)).



5.3 Games for Herbrand’s theorem 145

Having no quantifier, they all have base-game ∅ but differ in their winning
condition:

WJ⊥K∃(∅) = ⊥ WJ>K∃(∅) = > WJϕK∃(∅) = ϕ

We respectively note 1,⊥, ϕ the corresponding wingames. We delay until the
next section 5.3.2 the definition of the rest of the interpretation of formulas
as (biased) games. However, the idea stays relatively simple: for the game
interpreting ϕ, the winning conditions associate a configuration x ∈C∞(JϕK)
with the deep formula of the expansion tree explored by x in which quantified
variables are replaced with the names of the events corresponding to the
quantifiers.
Example 5.1. The game DF appearing on Figure 5.9 will have winning con-
ditions

WJDF K∃(∅) = ⊥
WJDF K∃({∃3}) = >

WJDF K∃({∃3, ∀3}) = (¬P(∃3) ∨ P(∀3))
WJDF K∃({∃3,∀3, ∃6}) = (¬P(∃3) ∨ P(∀3)) ∨ >

WJDF K∃({∃3,∀3,∃6, ∀6}) = (¬P(∃3) ∨ P(∀3)) ∨ (¬P(∃6) ∨ P(∀6))
· · ·

One can see that for interpreted formulas, the winning condition of a configu-
ration x is “syntactically included” in the winning condition of a configuration
x′ ⊇ x. In the above example, the false formula on the first line is due to
∃loïse lost if she does not open the game. Similarly, the true formula on the
second and fourth lines are due to ∀bélard not having played ∀i yet, yielding
victory to ∃loïse on these configurations. Other components correspond to
the deep formulas of the corresponding expansion trees.

Winning strategies Winning conditions are syntactic, uninterpreted for-
mulas. In the example above this is illustrated by the fact that we keep the
fourth formula as-is although it is equivalent to >. As mentioned earlier, the
evaluation of winning conditions is performed at the level of strategies:

Definition 5.8. LetA be a win-game and σ : A be an elementary Σ-strategy,
a configuration x ∈ C∞(σ) is tautological in σ if the formula

WA(x)[λσ]

corresponding to the substitution of WA(x) ∈ QF∞Σ (x) by λσ : x→ TmΣ(x),
is a (possibly infinite) tautology.
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From there we can define winning strategies.

Definition 5.9. LetA be a win-game and σ : A be an elementary Σ-strategy,
σ is

- winning, if for every configuration x ∈C∞(σ) that is +-maximal (mean-
ing that for every atomic extension x

a
−−⊂ ∈C∞(σ), polA(a) = −) then

x is is tautological.

- top-winning if |σ| ∈ C∞(σ) is tautological.

A winning Σ-strategy is top-winning, but not always the other way
around. The minimal, top-winning Σ-strategies σ : JϕK∃ will correspond
to expansion trees; but the winning strategies will behave better composi-
tionally.

5.3.2 A (biased) interpretation of formulas
We now complete the ∃-biased interpretation of formulas as games introduced
in the previous section. This is performed inductively on the structure of
formulas so we have to consider formulas that are not closed, i.e. with free
variables.

V-games For V a finite set, a V-game is defined as a wingame A from
Definition 5.7, but with signature Σ extended with V . In other words, for
x ∈ C∞(A),

WA(x) ∈ QF∞Σ]V(x) .
We now define constructions on V-games rather than just wingames. The

duality operation on games extends to V-games, simply by negating the
winning conditions:

Definition 5.10. Let A be a V-games, its dual A⊥ is the game A⊥ and for
every x ∈ C∞(A) the winning condition,

WA⊥(x) =WA(x)⊥.

Similarly, the usual parallel composition of games gives rise to two con-
structions on V-games:

Definition 5.11. Let A and B be V-games. Their tensor A⊗ B and their
par A`B have both A ‖ B as underlying game, and winning conditions, for
xA ‖ xB ∈ C∞(A ‖ B):

WA⊗B(xA ‖ xB) = WA(xA) ∧WB(xB)
WA`B(xA ‖ xB) = WA(xA) ∨WB(xB)
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There is an implicit renaming going on there: WA(xA),WB(xB) are consid-
ered in QF∞Σ]V(xA ‖ xB) rather than in QF∞Σ]V(xA) and QF∞Σ]V(xB) respec-
tively – here and in the sequel, we will keep such renamings implicit

Note that in all three cases, we use the syntactic constructions (−)⊥,
∨ and ∧ on formulas. So the winning conditions generate uninterpreted
syntactic objects. Note also that this definition yields the expected duality
between the tensor and the par.

Lemma 5.1. For any games A and B, we have:

(A⊗ B)⊥ = A⊥ ` B⊥
(A` B)⊥ = A⊥ ⊗ B⊥

Proof. Straightforward by definition and the De Morgan laws on formulas.

As expected, the interpretation of conjunction and disjunction relies on
the above constructions:

Jϕ1 ∨ ϕ2K∃V = Jϕ1K∃V ` Jϕ2K∃V
Jϕ1 ∧ ϕ2K∃V = Jϕ1K∃V ⊗ Jϕ2K∃V

for ϕ1, ϕ2 ∈ Form(V) and the interpretation now parametrized by V and
producing V-games.

The reader may wonder why these operations are written ⊗ and ` rather
than ∧ and ∨. This is because, as we will see, these operations by themselves
behave more like the connectives of linear logic [Gir87] than those of classical
logic; for each V the ⊗ and ` will form the basis of a ∗-autonomous structure
and hence a model of multiplicative linear logic.

Replication. To recover classical logic, we will add replication to the in-
terpretation of formulas. We first define the countable parallel composition
on games as follows.

Definition 5.12. Let A be an elementary game, its countable parallel com-
position is the game ‖ω A = (N× |A|,≤‖ωA, pol‖ωA) with

- causality: (i, a1) ≤‖ωA (j, a2) iff i = j and a1 ≤A a2;

- polarity: pol‖ωA((i, a)) = polA(a).

Configurations in ‖ω A are of the form ‖i∈ω xi with xi ∈ C∞(A). We
say that x ∈ C∞(‖ω A) has finite support if it has only finitely many non-
empty components – note that this is different from being finite. Again, this
construction on games yields two distinct operation on V-games:
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Definition 5.13. Let A be a V-game. We define two new V-games !A and
?A with base-game ‖ω A, and winning conditions:

W!A(‖i∈ω xi) = ∧
i∈ωWA(xi)

W?A(‖i∈ω xi) = ∨
i∈ωWA(xi)

Formally the above leads to infinite countable conjunctions or disjunctions
even for finite configurations. When x has finite support though, we will
always implicitly simplify it to a finite one, compacting the infinitely many
occurrences of WA(∅) into a single one.

Prefixing By the above, we know how to replicate moves in V-games, we
now define how to introduce new ones so as to interpret quantifiers.

Definition 5.14. Let A be an elementary game, its +-prefixed game +A has

- Events: {(0, ◦)} ∪ ({1} × |A|);

- Causality: (i, a) ≤+A (j, a′) iff i = j = 1 and a ≤A a′, or (i, a) =
(0, ◦) ;

- Polarity: pol+A((0, ◦)) = + and pol+A((1, a)) = polA(a).

And similarly for the −-prefixed game, −A, with the exception of
pol−A((0, ◦)) = −.

Causality implies that that (0, ◦) is the unique minimal event in +A (re-
spectively −A). Thus, configurations in prefixed game are either empty, or
of the form {(0, ◦)} ∪ ({1} × xA) with xA ∈ C∞(A), written ◦.xA. When
clear in the context we will drop the 0/1 indexing on events. Drawing inspi-
ration from the game metaphor on expansion trees, we introduce two new
constructions on V-games:

Definition 5.15. For A a (V ] {x})-game, the V-game ∀x.A and its dual
∃x.A have games −A and +A respectively, and winning conditions:

W∀x.A(∅) = > W∀x.A(∀.xA) = WA(xA)[∀/x]
W∃x.A(∅) = ⊥ W∃x.A(∃.xA) = WA(xA)[∃/x]

abusing notation by writing ∀ and ∃ instead of (0, ◦) for the initial move.

In other words, on a universal quantifier, Opponent is supposed to start;
if he does not, that is a win for Player regardless of the rest of A. Dually,
on an existential quantifier Player is supposed to provide a witness and he
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J>K∃V = 1 JP(t1, . . . , tn)K∃V = P(t1, . . . , tn)
J⊥K∃V = ⊥ J¬P(t1, . . . , tn)K∃V = ¬P(t1, . . . , tn)

J∃xϕK∃V = ?∃x.JϕK∃V]{x} Jϕ1 ∨ ϕ2K∃V = Jϕ1K∃V ` Jϕ2K∃V
J∀xϕK∃V = ∀x.JϕK∃V]{x} Jϕ1 ∧ ϕ2K∃V = Jϕ1K∃V ⊗ Jϕ2K∃V

Figure 5.10: ∃-biased interpretation of formulas

loses if he fails to do so. In both cases, once the initial move has been played,
we continue on A with the variable x replaced with the newly introduced
witness.

Putting everything together, we give in Figure 5.10 the general definition
of the ∃-biased interpretation of a formula ϕ ∈ FormΣ(V) as a V-game. In
particular, one can note the difference between the case of existential and
universal formulas, reflecting the bias towards ∃loïse in the interpretation.
The reader can check that this is indeed compatible with the examples given
previously.

Towards compositional Herbrand’s theorem We can now restate Her-
brand’s theorem in term of elementary concurrent games:

Theorem 5.9. For any closed formula ϕ, |= ϕ iff ϕ has a finite, top-winning
Σ-strategy σ : JϕK∃.

Besides the game-theoretic language, the difference with expansion trees
is superficial: on ϕ, expansion trees essentially coincide with the minimal
top-winning Σ-strategies σ : JϕK∃; the only noticeable difference between the
two is that strategies carry an explicit witness for acyclicity.

From that perspective, theorem 5.9 above can be deduced via Miller’s
version of Herbrand’s theorem (see 5.8) with expansion trees. This would
however make its validity intrinsically rely on the admissibility of cut in
the sequent calculus and leave Σ-strategies as static objects, alternative
bureaucracy-free representations of cut-free proofs.

But unlike expansion trees, strategies can be composed. In the next two
chapters we will see that the effort to change view point, from a syntactic
construction to a (game) semantic one, pays off as our games model will allow
us to give an alternative proof of Herbrand’s theorem where witnesses are
obtained truly compositionally from any sequent proof, without first elimi-
nating cuts. In other words, expansion trees will come naturally from the
interpretation of the classical sequent calculus, as presented on figure 5.1, in
the above games model.
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As a first glimpse, a proof π of an LK sequent ` ϕ1, . . . , ϕn will be in-
terpreted as a winning Σ-strategy JπK : Jϕ1K ` · · ·` JϕnK. Then, in order to
interpret the cut rule,

Cut
` Γ, ϕ ` ϕ⊥,∆

` Γ,∆

we will use the composition Jπ2K � Jπ1K between Jπ1K : JΓK ` JϕK and Jπ2K :
JϕK⊥ ` J∆K resulting in a strategy over JΓK ` J∆K.

We will first make precise the linear part of this model (without replica-
tion) in order to interpret first order MLL, then put replication back to fully
interpret the sequent rules of classical first order logic. The impatient reader
may jump to theorem 7.2 for the final version this compositional Herbrand’s
theorem.



Chapter 6

A model for first order MLL

In this chapter we show how the model of elementary games and Σ-strategies,
Σ-Det, presented in chapter 2 and 4, can be extended with winning and a
fibred structure in order to interpret first order MLL (MLL1).

Following these two steps, we first show that V-games and winning el-
ementary Σ-strategies, as introduced in the previous chapter, form an ∗-
autonomous category V-Games, that therefore is a model of V-MLL.

We then show that the V-Games categories support substitution and
can be organised into a substitution-indexed ∗-autonomous category. This
allows for the interpretation of first order quantifier in the model and we
finally interpret MLL1, proving a lax soundness result with respect to cut
elimination.

6.1 Winning Σ-strategies
In this section we present a ∗-autonomous category of games and strategies,
obtained by extending the compact closed category Σ-Det presented in chap-
ter 4 with winning conditions. We briefly recall why ∗-autonomous categories
are models of MLL.

In this section we aim to give an interpretation of MLL proofs, which
should be invariant under cut-elimination. Categorical logic tells us that this
is essentially the same as producing a ∗-autonomous category. We opt here
for the equivalent formulation by Cockett and Seely as a symmetric linearly
distributive category with negation [CS97].
Definition 6.1. A symmetric linearly distributive category is a category C
with two symmetric monoidal structures (⊗, 1) and (`,⊥) which distribute:
there is a natural

δA,B,C : A⊗ (B ` C) C−→ (A⊗B) ` C,

the linear distribution, subject to the expected coherence conditions [CS97].
Definition 6.2. A symmetric linearly distributive category with negation
also has a function (−)⊥ on objects and families of maps

ηA : 1 C−→ A⊥ ` A and εA : A⊗ A⊥ C−→ ⊥
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such that the canonical composition A→ A⊗(A⊥`A)→ (A⊗A⊥)`A→ A,
and its dual A⊥ → A⊥, are identities.

It is interesting to note that a compact closed category is a degenerate case
of symmetric linearly distributive category where the monoidal structures
(⊗, 1) and (`,⊥) coincide.

Abusing terminology, we refer to symmetric linearly distributive categories
with negation by the shorter ∗-autonomous categories. This should not create
any confusion in the light of their equivalence.

6.1.1 ∗-autonomous structure
We now prove that the compact closed category of elementary games and Σ-
strategies, Σ-Det as defined in section 4.3.3, can be turned into a symmetric
linearly distributive category with negation – or equivalently, a ∗-autonomous
category – by the addition of winning conditions onto games as presented in
chapter 5.3.2.

In the following, we will use the wording Σ-receptivity and Σ-courtesy
in place of T-receptivity and T-courtesy in the definition of elementary Σ-
strategies (see definition 4.28).

A category of winning Σ-strategies

In section 5.3.2 of the previous chapter, we defined a notion of winning for
elementary Σ-strategies over wingames (see definition 5.9). From now on we
will restrict to those elementary Σ-strategies that are winning and simply
refer to them as winning strategies.

On wingames, parallel composition is not defined anymore; instead there
are two distinct constructors, ⊗ and `, for putting games in parallel. We
thus need to refine the usual definition of strategy from a game to an other:

Definition 6.3. Let A and B be wingames. A winning strategy from A to
B is a winning elementary Σ-strategy σ : A⊥ ` B.

We also write σ : AGames
+ // B.

First of all, we give sufficient conditions for copycat strategies to be win-
ning.

Lemma 6.1. Let A,B be two wingames, and f : A ∼= B be an isomorphism
of elementary games. Assume moreover that f preserves winning, in the
sense that for all x ∈ C (A), we have

|=WA(x) =⇒ WB(f x)[f−1]
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(we then write f : A → B). Then, cc f : A + // B is a winning strategy from
A to B.

Proof. Recall if xA ‖ xB ∈ C∞( cc f ) then xB = f x′A such that x′A ∈ C∞(A)
and x′A v xA. If, furthermore, xA ‖ xB is +-maximal then, in fact, xA = x′A.
Indeed, if there was f a ∈ xB with a 6∈ xA, then (xA ∪ {a}) ‖ xB would be
a positive extension of xA ‖ xB still in C ( cc f ), and similarly for the converse
inclusion.

By definition, we have:

WA⊥`B(xA ‖ f xA) = WA(xA) =⇒ WB(f xA)

To check that xA ‖ xB is tautological, we need to check that the substi-
tution of the above by λ cc f yields a tautology. Recall that λ cc f leaves negative
events unchanged, and replaces positive events with their negative counter-
part on the other side. Hence, we have:

WA⊥`B(xA ‖ f xA)[λ cc f ]
= WA(xA)[f a/a | a− ∈ A] =⇒ WB(f xA)[a/f a | a+ ∈ A]

Applying the global renaming exchanging a and f a for a− ∈ A (which pre-
serves and reflects tautological status), we get:

WA(xA) =⇒ WB(f xA)[f−1]

a tautology by assumption – in fact, we have proved that preserving winning
in the sense above is a necessary and sufficient so that the corresponding
copycat strategy is winning, though we shall only use the sufficient part in
the sequel.

In particular, it follows from this lemma that for all wingame A, ccA :
A + // A is a winning strategy. We now prove that winning strategies are
stable under composition.

Lemma 6.2. Let σ : A + // B and τ : B + // C be two winning strategies.
Then, τ � σ : A + // C is still a winning strategy.

Proof. Let xA ‖ xC ∈ C∞(τ�σ) be a +-maximal configuration, and consider
its minimal witness [xA ‖ xC ]τ~σ ∈ C∞(τ ~ σ). We know that it is of the
form

xA ‖ xB ‖ xC
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with xA ‖ xB ∈ C∞(σ) and xB ‖ xC ∈ C∞(τ). Unfortunately, these two
configurations might not be +-maximal in their respective strategies. Yet,
consider the set of all witnesses for xA ‖ xC ∈ C∞(τ � σ), i.e. the set

{xA ‖ x′B ‖ xC ∈ C∞(τ ~ σ)}

partially ordered by inclusion. It has suprema of all chains – as it is stable
under unions – therefore, by Zorn’s lemma, it has a maximal element:

xA ‖ xmax
B ‖ xC ∈ C∞(τ ~ σ)

This time, xA ‖ xmax
B ∈ C∞(σ) and xmax

B ‖ xC ∈ C∞(τ) are +-maximal,
for if it was not the case, we would get a contradiction with either maximality
of (xA ‖ xmax

B ‖ xC) or +-maximality of xA ‖ xC ∈ C∞(τ � σ).
From the fact that σ and τ are winning, we get then:

|= (WA(xA) =⇒ WB(xmax
B ))[λσ]

|= (WB(xmax
B ) =⇒ WC(xC))[λτ ]

Since tautologies are stable under substitution, it follows:

|= (WA(xA) =⇒ WB(xmax
B ))[λσ][λτ~σ]

|= (WB(xmax
B ) =⇒ WC(xC))[λτ ][λτ~σ]

(where there is, again, an implicit renaming of the free variables so that the
expression typechecks). However, following the inductive definition of λτ~σ
(see 4.29) and the fact that λσ and λτ are idempotent, this is equivalent to

|= (WA(xA) =⇒ WB(xmax
B ))[λτ~σ]

|= (WB(xmax
B ) =⇒ WC(xC))[λτ~σ]

therefore, by transitivity of implication,

|= (WA(xA) =⇒ WC(xC))[λτ~σ]

but this is the same as (WA(xA) =⇒ WC(xC))[λτ�σ], and hence τ � σ is as
required a winning strategy.

Overall, we have proved:

Corollary 6.1. There is a category Games of wingames and winning strate-
gies.
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Bifunctors for ⊗ and `
We now prove that the split of the parallel composition of games, into the
tensor and par operations on wingames, as defined in section 5.3.2, extends
to winning strategies and yields bifunctorial actions for both tensor and par.

Lemma 6.3. For any σ : A1 + // B1 and τ : A2 + // B2, the elementary Σ-
strategy σ ⊗ τ : A1 ⊗ A2

Σ-Det−−−→ B1 ⊗B2 defines two winning strategies:

σ ⊗ τ : A1 ⊗A2 + // B1 ⊗ B2 ; σ ` τ : A1 `A2 + // B1 ` B2.

Proof. Let (xA1 ‖ xA2) ‖ (xB1 ‖ xB2) ∈ C∞(σ ⊗ τ) be +-maximal. By
definition of σ ⊗ τ , we have

(xA1 ‖ xB1) ‖ (xA2 ‖ xB2) ∈ C∞(σ ‖ τ)

which is +-maximal as well, i.e. xA1 ‖ xB1 ∈ C∞(σ) and xA2 ‖ xB2 ∈ C∞(τ)
are +-maximal. Since σ and τ are winning, it follows that:

|= (WA1(xA1) =⇒ WB1(xB1))[λσ]
|= (WA2(xA2) =⇒ WB2(xB2))[λτ ]

Therefore, we have:

|= (WA1(xA1)[λσ] ∧ (WA2(xA2)[λτ ])) =⇒ (WB1(xB1)[λσ] ∧WB2(xB2)[λτ ])

by monotonicity of ∧. But that is the same as:

|= ((WA1(xA1) ∧WA2(xA2)) =⇒ (WB1(xB1) ∧WB2(xB2)))[λσ⊗τ ]

(leaving as usual some renamings implicit) as required.
Likewise, for σ ` τ , critically using monotonicity of ∨ instead.

Since we already know that these operations preserve identities, we have
finished constructing the bifunctorial action of ⊗ and `:

−⊗− : Games×Games→ Games
−`− : Games×Games→ Games

A symmetric linearly distributive category

We now equip the category Games, together with the two bifunctors ⊗ and
`, with the structure of a symmetric linearly distributive category. Unsur-
prisingly, their units match with the interpretation of > and ⊥ presented in
section 5.3.
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Definition 6.4. The wingames 1 and ⊥ are set to be the empty game ∅
together with the respective winning conditions:

W1(∅) = > W⊥(∅) = ⊥

With that in place, we state and prove the main result of this subsection.

Proposition 6.1. The category Games is a symmetric linearly distributive
category.

Proof. We first check that (⊗,1) and (`,⊥) define symmetric
monoidal structures on Games. All necessary structural strate-
gies are copycat strategies, obtained using Lemma 6.1 and the
observation that the following canonical isomorphisms of ele-
mentary games all preserve winning, and so do their inverse.

ρ⊗A : A⊗ 1 → A ρÀ : A`⊥ → A
λ⊗A : 1⊗A → A λÀ : ⊥`A → A
s⊗A,B : A⊗ B → B ⊗A sÀ,B : A` B → B `A

α⊗A,B,C : (A⊗ B)⊗ C → A⊗ (B ⊗ C) αÀ,B,C : (A` B) ` C → A` (B ` C)
This is immediate as they correspond to equivalences at the propositional
level.

Then, there is a faithful forgetful functor from Games to Σ-Det sending
both 1 and ⊥ to 1, both ⊗ and ` to ⊗ in the strict sense; and each of
the copycat winning strategies above to the corresponding structural mor-
phism for the symmetric monoidal structure of Σ-Det. It follows automat-
ically that they satisfy the required coherence and naturality conditions,
equipping Games with two symmetric monoidal structures (Games,⊗, 1) and
(Games,`,⊥).

Finally, we check that there is a linear distributivity natural transfor-
mation. We notice that the associativity isomorphism of games αA,B,C also
preserves winning:

αA,B,C : A⊗ (B ` C)→ (A⊗ B) ` C
which boils down to the fact that for any ϕ1, ϕ2, ϕ3 ∈ QF∞Σ (V),

|= ϕ1 ∧ (ϕ2 ∨ ϕ3) =⇒ (ϕ1 ∧ ϕ2) ∨ ϕ3

Note that unlike previously, the inverse of this isomorphism of games does
not preserve winning. The coherence [CS97] and naturality conditions are
again direct through the strict monoidal faithful forgetful operation, as their
image in Σ-Det correspond to commuting diagrams of structural morphisms.
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Negation

Our last point is to show that the symmetric linearly distributive category
Games has negation. Again, we will do that by showing that the units and
co-units for the compact closed structure of Σ-Det can be enriched with
winning conditions.

Lemma 6.4. Let A be any wingame. Then, the following are winning strate-
gies:

ηA : 1 + // A⊥ `A εA : A⊗A⊥ + // ⊥

Proof. The proof follows the exact same lines as for Lemma 6.1. By a direct
analysis of +-maximal configurations and their annotations, the lemma boils
down to the fact that for any formula ϕ, the following are tautologies.

|= > =⇒ ϕ⊥ ∨ ϕ
|= ϕ ∧ ϕ⊥ =⇒ ⊥

Through the same faithful forgetful operation as above, the required equa-
tions follow from the corresponding equations for the compact closure of
Σ-Det.

Together, we have finished the proof of:

Corollary 6.2. The category Games is a ∗-autonomous category.

6.1.2 Interpretation of MLL
It is known that if C is a ∗-autonomous category equipped with a choice of
JP(t1, . . . , tn)K (an object of C) for all closed literals, then it defines a model
for MLL based on those literals [See87]. Based on our game model Games,
we give a brief overview of this standard interpretation of MLL proofs into
a ∗-autonomous category.

Formulas Following the ∃-biased interpretation of section 5.3, we regard
a closed literal ϕ as the wingame (∅,Wϕ(∅) = ϕ). For all such ϕ, we have
J¬ϕK = JϕK⊥.

By induction on the formulas, this interpretation then extends to all MLL
formulas (or, alternatively, to all closed quantifier-free formulas) following the
∗-autonomous structure of Games as depicted on figure 6.1.
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J>K = 1 Jϕ1 ∨ ϕ2K = Jϕ1K ` Jϕ2K
J⊥K = ⊥ Jϕ1 ∧ ϕ2K = Jϕ1K⊗ Jϕ2K

J¬ϕK = JϕK⊥ JP(t1, . . . , tn)K = P(t1, . . . , tn)

Figure 6.1: Interpretation of closed quantifier-free formulas of MLL1

Proofs. A proof π of an MLL sequent ` ϕ1, . . . , ϕn is interpreted as a
winning strategy

JπK : 1Games
+ // Jϕ1K ` · · ·` JϕnK.

This follows the standard lines of the interpretation of MLL into a ∗-
autonomous category as detailed on figure 6.2. By definition, this yields,
for any proof, a winning strategy in the corresponding game. Furthermore,
the cut rule being interpreted using composition, the categorical laws make
this interpretation invariant under cut reduction. We have:

Theorem 6.1. If π  MLL π
′ are proofs of ` Γ then JπK = Jπ′K.

So a proof has the same denotation as its cut-free form obtained by theo-
rem 5.3. Note that in our case, the above theorem is trivial: every MLL for-
mula ϕ is interpreted as an empty wingame of winning condition wJϕK(∅) = ϕ.
Hence, if ϕ is valid, all its proofs are sent to the empty strategy, that is win-
ning by definition. So proofs are equalised in their interpretations by the
mere fact of proving the same formulas and none of the structure of the
proofs is yet reflected in our strategies. The disappointed reader can how-
ever be reassured, this interpretation is only a base step toward the richer
interpretation of MLL1 described in the next section.

6.2 Interpretation of MLL1

As mentioned in section 5.3, interpreting first order logic starts by being
able to interpret open formulas. As then intuited, this is achieved in our
game model by allowing winning conditions to depend on free variables from
a fresh finite set V . This generalisation extends to strategies, simply allowing
their term annotations to rely on V as well.

Definition 6.5. Let A and B be two V-games. A winning V-strategy from
A to B is a winning elementary {Σ ] V}-strategy σ : A⊥ ` B.

We also write σ : AGaΣ]V
+ // B.

It is clear that the ∗-autonomous structure of Games is preserved by this
generalisation; we note V-Games the corresponding ∗-autonomous category.
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s
Ax
`V ϕ⊥, ϕ

{
= 1

ηϕ
+ // ϕ⊥ ` ϕ

r1I
`V 1

z
= 1 + // 1

u

w
v⊥I

π

`V Γ
`V Γ,⊥

}

�
~ = 1

JπK
+ // Γ ∼= Γ `⊥

u

w
vEx

π

`V Γ, ϕ, ψ,∆
`V Γ, ψ, ϕ,∆

}

�
~ = 1

JπK
+ // Γ ` ϕ` ψ ` ∆ ∼= Γ ` ψ ` ϕ` ∆

u

w
vCut

π1

`V Γ, ϕ
π2

`V ϕ⊥,∆
`V Γ,∆

}

�
~ = 1

Jπ1K⊗Jπ2K
+ //

(Γ ` ϕ)⊗ (ϕ⊥ ` ∆) + // Γ ` (ϕ⊗ ϕ⊥) ` ∆
Γ⊗εϕ⊗∆

+ // Γ `⊥` ∆ ∼= Γ ` ∆
u

w
v⊗I

π1

`V Γ, ϕ
π2

`V ψ,∆
`V Γ, ϕ⊗ ψ,∆

}

�
~ = 1

Jπ1K⊗Jπ2K
+ // (Γ`ϕ)⊗(ψ`∆) + // Γ`(ϕ⊗ψ)`∆

u

w
v`I

π

`V Γ, ϕ, ψ,∆
`V Γ, ϕ` ψ,∆

}

�
~ = 1

JπK
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Figure 6.2: Interpretation of MLL
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J1KV = 1 Jϕ1 ` ϕ2KV = Jϕ1KV ` Jϕ2KV
J⊥KV = ⊥ Jϕ1 ⊗ ϕ2KV = Jϕ1KV ⊗ Jϕ2KV

JP(t1, . . . , tn)KV = P(t1, . . . , tn) J∃xϕKV = ∃x.JϕKV]{x}
J¬P(t1, . . . , tn)KV = ¬P(t1, . . . , tn) J∀xϕKV = ∀x.JϕKV]{x}

Figure 6.3: Interpretation of quantifier free formulas in V-Games

Then the interpretation of MLL in Games as described in the previous sec-
tion extends straightforwardly to V-MLL in V-Games, noted J−KV ; the only
novelty is that V-open literals ϕ are now allowed. Still their interpretation
remains

JϕKV = (∅, {} 7→ ϕ)

that is, the empty game with ϕ as winning condition on the unique (empty)
configuration. Figure 6.3 summarizes the J−KV interpretation.

Of course, interpreting open formulas is not enough. In section 5.3 we also
introduced two constructors on games, ∀x and ∃x, to interpret quantifiers.
Contrary to the biased interpretation J−K∃ – where the replication construc-
tor ? was needed for existentials – we show in this section that those construc-
tors are well-suited to interpret directly the linear quantifiers of MLL1. In
particular, we give two constructions on proofs to interpret their introduction
rules.

Checking that this interpretation is well-behaved for cuts however requires
a bit of prior work. As mentioned in section 5.1, cut reduction rules for
quantifiers make use of substitution on proofs (see figure 5.3). Our first
objective is thus to introduce substitution on games and strategies in order
to reflect this construction from proofs. This leads to organising V-game
models as an indexed category (yet to be defined) on top of the category of
substitutions.

The informed reader may have recognised Lawvere’s category theoretic
descriptions of quantifiers via hyperdoctrine [Law69], in the plan above. Al-
though our work is certainly inspired from this notion, we will see that our
model does not fit all of its properties.

6.2.1 A fibred model of V-MLL
Following [Law69, See83], we expect to model V-MLL and substitution on
proofs in the categorical structure of an indexed category on top of the cat-
egory of substitutions:
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Definition 6.6. Let ∗-Aut be the category of ∗-autonomous categories and
functors preserving the structure strictly, then a strict 1 Subst-indexed ∗-
autonomous category is a functor

G : Substop → ∗-Aut

The intuition is that G selects a model of V-MLL and functoriality pro-
vides a notion of substitution between these models (hence on the interpre-
tation of proofs). For this to be the case, one further asks for G to support Σ,
meaning that for Vn = {x1, . . . , xn}, every predicate symbol P of arity less
than or equal to n is associated with an object of G(Vn) – its interpretation
JPKVn – and that this association satisfies the following equality, for every
t1, . . . , tn ∈ TmΣ(V)

JP(t1, . . . , tn)K = (JPKVn)[t1/x1, . . . , tn/xn]

where, for readability, the action of G(γ : V1
Σ→ V2) : G(V2) → G(V1) is

written (_)[γ].

Substitution on games Let us now introduce our concrete structure. For
any finite V , the fibre G(V) is going to be the category V-Games described
in the introduction. Characterising the functorial action of G in our model
thus amounts to defining substitution on V-games and winning V-strategies.
We define it first on V-games:

Definition 6.7. Let γ : V1
Σ→ V2, and A be a V2-game. Then the substituted

V1-gameA[γ] has unchanged game A, and winning conditions for x ∈C∞(A):

WA[γ](x) =WA(x)[γ] ∈ QF∞Σ]V1(x)

It is obvious from this definition that substitution commutes with all
operations on V-games, i.e. (−)⊥,⊗ and `. Moreover, substitution on
games supports Σ, as, for any predicate P of arity n ≤ |V|, and any terms
t1, . . . , tn ∈ TmΣ(V ′):

JP(t1, . . . , tn)KV ′ = (∅, {} 7→ P(t1, . . . , tn))
= (∅, {} 7→ P(x1 . . . xn)[t1/x1, . . . , tn/xn])
= (JPKVn)[t1/x1, . . . , tn/xn]

1 Usually definitions (e.g. [See83]) ask for strong functors instead of strict ones, i.e.
equality up to isomorphism instead of strict equality. We opt here for this simpler version
as our own model turns out to be strict.
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Substitution on winning strategies We now move on to defining sub-
stitution on winning V-strategies; we define it first on (Σ]V)-augmentations.

Definition 6.8. Let (q, λq) ∈ (Σ ] V2)-Aug(A) for some game A and γ :
V1

Σ→ V2 be a substitution, then substitution of q by γ is:

q[γ] = (q, λq[γ])

This obviously defines a (Σ ] V1)-augmentation over A.

Checking that substitution is actually well-behaved on winning strategies
requires a little work; we first inspect the term annotations.

Lemma 6.5. Let σ : A be an elementary (Σ] V2)-strategy, and γ : V1
Σ→ V2

be a substitution. Then, σ[γ] is an elementary (Σ ] V1)-strategy on A.

Proof. We only need to check Σ-receptivity and Σ-courtesy. For Σ-
receptivity, take a− ∈ |σ|. We know that λσ(a) = a, so in particular without
variables in V2. Therefore, λσ[γ](a) = a as well as required.

For Σ-courtesy, take a+ ∈ |σ|. We have λσ(a) ∈ TmΣ]V2([a]−σ ) =
TmΣ([a]−σ ] V2) by Σ-courtesy (we use, here, the implicit assumption that
sets of free variables are always disjoint from the sets of events in a game –
this can be easily ensured w.l.o.g.). Therefore, λσ(a)[γ] ∈ TmΣ([a]−σ ] V1) as
required.

We now check that substitution also preserves winning:

Lemma 6.6. Let γ : V1
Σ→ V2 be a substitution, A a V2-game, and σ : A a

winning V2-strategy. Then,
σ[γ] : A[γ]

is a winning V1-strategy.

Proof. Let x ∈ C∞(σ) be ∃-maximal. Since σ is winning, we have
|=WA(x)[λσ].

Tautologies are stable under substitution, so WA(x)[λσ][γ] is a tautology
as well. But that is the same as WA(x)[γ][λσ[γ]] as substitution by γ does
not create variables in x. Hence, σ[γ] is winning as required.

Indexed category We wish to prove that for γ : V1
Σ→ V2, the substitution

defined above extends into a strict ∗-autonomous functor from V2-Games to
V1-Games. More generally,



6.2 Interpretation of MLL1 163

Theorem 6.2. Games and winning strategies can be organized into an in-
dexed ∗-autonomous category, that is a functor

Games(−) : Substop → ∗-Aut

where ∗-Aut is the category of ∗-autonomous categories and strict ∗-
autonomous functors.

Proof. We set Games(V) = V-Games and for γ : V1
Σ→ V2 a substitution,

Games(γ) is defined on V2-games and winning V2-strategies as explained in
definitions 6.7 and 6.8.

We have already noticed that substitution is strict with respect to the
operations on V-games so we focus on structural morphisms and operations
on winning strategies.

Since substitution only acts over term annotations but preserves causal
structure and winning at the level of strategies, every proof obligation boils
down to a check on term annotations.

For structural morphisms, it is enough to note that copycat strategies
do not make use of variables in V2 in their term annotations. So they are
strictly preserved by substitution. For tensor product, it is direct to check
that substitution commutes with the corresponding renaming.

Composition is maybe the most intricate case: take σ : A⊥ ‖ B and τ :
B⊥ ‖ C two winning V2-strategies, then, by definition, τ [γ]~σ[γ] = (τ~σ)[γ]
at the level of plain augmentations and, following the inductive definition of
their respective term annotations (see 4.23) it is easy to check that

λ(τ~σ)[γ] = λ(τ [γ])~(σ[γ])

Hence, the two Σ] V1-augmentations are actually equal and the same holds
after hiding. So substitution preserves composition.

Finally, it is obvious by definition 6.7 and 6.8 that the above assignment
for Games(−) is itself functorial, yielding an indexed structure.

6.2.2 Linear quantifiers
For any finite set V , the construction above provides a way to interpret
V-MLL in V-Games and also to model substitutions. We finally give the
interpretation for first order quantifiers and their introduction rules ∀I and
∃I. We call this interpretation linear and write J−K`V . On formulas, J−K`V
extends J−KV , interpreting quantifiers with the quantifiers on games from
definition 5.15:

J∃xϕK`V = ∃x.JϕK`V]x J∀xϕK`V = ∀x.JϕK`V]x
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Note that this is almost the same interpretation as J−K∃V except for J∃xϕK`V .
Besides preserving the ∗-autonomous structure, substitution also propa-

gates through quantifiers on games, from which we have:

Lemma 6.7. Let ϕ ∈ FormΣ(V2) and γ : V1 → V2 a substitution, then
Jϕ[γ]K`V1 = JϕK`V2 [γ].

Proof. That the constructors ∃x and ∀x commute with substitution [γ] and
[γ ] (x 7→ x)] is direct from their definitions. The lemma then follows by
structural induction.

The above identity will be used implicitly from now on.

No hyperdoctrine Following the usual interpretation of quantifiers in
hyperdoctrines [Law69], the way to proceed from a Subst-indexed ∗-
autonomous category G is to find, for every finite set V , two functors,
∀V,x,∃V,x : G(V ] {x}) → G(V), that respectively are right and left ad-
joints to the weakening functor [wV,x] = G(wV,x) : G(V) → G(V ] {x}) –
for wV,x : V ] {x} Σ→ V the weakening substitution:

G(V ] {x})

∀V ,x
>

!!

∃V ,x
>

::
G(V)

_[wV,x]
oo

This leads to interpreting the ∀I and ∃I rules as follows:

- for JπKV]{x} : A[wV,x]
G(V)]{x}−−−−−→ B a proof interpretation in G(V ] {x}),

the right adjunction ∀V,x ` [wV,n] yields a morphism

A
G(V)−−→ ∀V,xB.

This morphism corresponds to the interpretation of π followed by ∀I
in G(V);

- for JπKV : A G(V)−−→ B[t/x] a proof interpretation in G(V) – with [t/x]
the substitution functor G([t/x]) : G(V ] {x}) → G(V) –, the co-unit
of the left adjunction wV,x ` ∃V,x defines a morphism ηB : B G(V]{x})−−−−−→
(∃V,x(B))[wV,x] which can be transported back to G(V) via [t/x], leading
to

(ηB)[t/x] : B[t/x] G(V)−−→ (∃V,x(B)).
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This morphism can thus be used in post-composition with JπK to define
a morphism A

G(V)−−→ (G[t/x]∃[t/x])B, the interpretation of π followed by
∃I in G(V).

In both case naturality ensures that this is preserved by cut elimination.
In our model, the constructors ∀x. and ∃x. on V-games defined in 5.15,

extend to functors ∀V,x,∃V,x : (V ] {x})-Games→ V-Games: for σ : A⊥ ` B
a winning V ] {x}-strategy,

∀V,x(σ) : (∀x.A)⊥ ` ∀x.B
is the winning V-strategy that first plays copycat on the initial ∀, then keeps
playing as σ; and similarly for ∃V,x(σ) : (∃x.A)⊥ ` ∃x.B.

We do not expend further on these functorial constructions as, unfor-
tunately, they do not define the expected left and right adjoints for wV,x.
Yet, investigating on the desired natural bijections lead us to construc-
tions in which to interpret the introduction rules for quantifiers, which we
now present. Later, we will see that this interpretation only preserves cut-
elimination in a weak sense; this is related to the above functors not defining
adjunctions.

∃I and ∀I interpretation We now interpret the ∀I and ∃I introduction
rules. First, we give an elementary Σ-strategy introducing a witness t (it
plays the role of the substituted co-unit described above).

Definition 6.9. Let A be a game and t ∈ TmΣ(V), we define ∃tA : A⊥ ‖
∃.A to be the tuple (|A⊥ ‖ ∃. A|,≤∃tA , λ∃tA) where ≤∃tA includes ≤ ccA , plus
dependencies

{((1,∃), (1, a)) | a ∈ A} ] {((1,∃), (0, a)) | ∃a0 ∈ A−. a0 ≤A a}

and term assignment that of cc A plus λ∃tA((1,∃)) = t.

This obviously defines an elementary (Σ]V)-strategy. This strategy plays
∃ annotated with t, then proceeds as copycat on A. We have:

Lemma 6.8. Let A be a V-game, and t ∈ TmΣ(V). Then,

∃tA : A⊥[t/x] ` ∃xA
is a winning V-strategy.
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Proof. Let xA ‖ x∃A ∈ C∞(∃tA) be a +-maximal configuration. As (1,∃) is
minimal in ∃tA, and by property of +-maximal configurations of copycat, x
necessarily has the form xA ‖ ({(1,∃)} ∪ xA) where xA ∈ C∞(A). It follows
by definition of λ∃tA that:

WA⊥[t/x]`∃xA(x)[λ∃tA ] = (WA(xA)[t/x]⊥ ∨WA(xA)[∃/x])[t/∃]
= (WA(xA)⊥ ∨WA(xA))[t/x]

which is a tautology.

As suggested above, ∃tA serves in the semantic construction corresponding
to the introduction rule for the existential quantifier: we interpret ∃I by
post-composing with ∃tA. This can be depicted as – removing interpretation
brackets around games for more readability:

u

w
v∃I

π

`V Γ, ϕ[t/x]
`V Γ,∃x. ϕ

}

�
~

`

= Γ⊥ JπK`→ ϕ[t/x]
∃tϕ→ ∃x.ϕ

In the above, we wrote JπK` : Γ⊥ + // ϕ[t/x], silently using the natural iso-
morphism between 1 + // Γ ` ϕ and Γ⊥ + // ϕ.

Symmetrically, we now introduce the semantic construction that will
match introduction of the universal quantifier.

Definition 6.10. For σ an elementary (Σ ] V ] {x})-strategy on A⊥ ‖ B,
we define ∀I xA,B(σ) : A⊥ ‖ ∀.B the elementary (Σ ] V)-strategy having:

- Events: |σ| ] {(1,∀)};

- Causality: ≤σ ∪{((1,∀), s) | s ∈ ∀.B ∨ ∃s′ ≤σ s, x ∈ fv(λσ(s′))};

- Term assignment: λ((1,∀)) = (1,∀) and λ(s) = λσ(s)[(1, ∀)/x] (s ∈
|σ|).

Intuitively, ∀I xA,B(σ) waits for the new negative move before playing any
event whose annotation includes x. However, it might still play positive
moves on the left whose annotations do not include x. Additionally, in the
term annotations, the variable x is changed to refer instead to the new neg-
ative event (1,∃).

We also prove the semantic correctness of the introduction of the universal
quantifier (note its “adjointness” flavour) .

Proposition 6.2. If σ is a winning (V ] {x})-strategy on A[wV,x]`B, then
∀I xA,B(σ) is winning on the V-game A` ∀x.B.
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Proof. Let x = xA ‖ x∀B ∈ C∞(∀I xA,B(σ)), be +-maximal, we distinguish two
cases:
• If (1,∀) 6∈ x∀B, then x = xA ‖ ∅, and WA⊥`∀xB(x)[λ∀I xA,B(σ)] =

WA(xA)[λ∀I xA,B(σ)]⊥ ∨ > is a tautology.
• Otherwise, x = xA ‖ ∀.xB where xA ‖ xB ∈ C∞(σ) is +-maximal, and,

using that A is a V-game (so x cannot appear in WA(xA)) we have:

WA⊥`∀xB(x)[λ∀I xA,B(σ)] = (WA(xA)⊥ ∨WB(xB)[(1,∀)/x])[λσ][(1, ∀)/x]
= (WA(xA)⊥[(1,∀)/x] ∨WB(xB)[(1,∀)/x])[λσ][(1,∀)/x]
= (WA[wV,x](xA)⊥ ∨WB(xB))[λσ][(1,∀)/x]

a tautology, since σ is winning.

This completes the interpretation of MLL1, setting
u

ww
v∀I

π

`V]{x} Γ, ϕ
`V Γ,∀x. ϕ

}

��
~

`

= Γ⊥ (∀I (JπK`))→ ∀x. ϕ

In the rest of this section, we study how the overall interpretation behaves
with respect to cut-elimination. Associativity of composition already ensures
that the interpretation of ∃I validates  Cut/∃, so we focus on  ∀/∃ and
 Cut/∀.

Cancellation of introductions. As a first consistency check, we verify
that the two introduction rules satisfy the equality corresponding to a cut
between ∀ and ∃,i.e. validates  ∀/∃.

Lemma 6.9. Let σ : A⊥ ‖ B be a winning (V ] {x})-strategy. Then, we
have:

(∃tB)⊥ � ∀I xA,B(σ) = σ[t/x]

where (∃xB)⊥ is ∃xB viewed as a V-strategy on ((∃B)⊥)⊥ ` B .

Proof. The synchronization between (1,∀) and (0,∃) is minimal in the in-
teraction, and causes a renaming of ∀I x to t. After it is played, we get an
interaction between σ and copycat on B.

More precisely let us show that (∃tB)⊥�∀I xA,B(σ) = cc B�σ[t/x](= σ[t/x]).
Following proposition 4.3, we start by showing that these two elementary
strategies – viewed as rigid ones – have the same set of augmentations.
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By definition, an augmentation of (∃tB)⊥ is of the form ∅ ‖ x′B or
(∃.xB) ‖ x′B such that (∅ ‖ x′B,≤∃tB), respectively (xB ‖ x′B,≤∃tB), is a aug-
mentation of cc B. Similarly an augmentation of ∀I xA,B(σ) is of the form xA ‖ ∅
or xA ‖ ∀I x.xB such that (xA ‖ ∅,≤∀I xA,B(σ)), respectively (xA ‖ xB,≤∀I xA,B(σ))
is an augmentation of σ. Note that in fact ∃ and ∀ denote the same prefixed
event with reverse polarities, so, there is a mapping from the set of causally
compatible augmentations of (∃tB)⊥ and ∀I xA,B(σ), and the set of causally
compatible augmentations of cc B and σ[t/x]. Moreover, if two pairs of com-
patible augmentations of (∃tB)⊥ and ∀I xA,B(σ) are send to the same pair of
compatible augmentations of cc B and σ[t/x] then, after interaction and pro-
jection, every pair define the same augmentation. Hence, by proposition 4.3
(∃tB)⊥ � ∀I xA,B(σ) = cc B � σ[t/x] as elementary strategies.

It remains to show that the term-annotations are equal: by definition
(λ∃tB)�B‖B = λ ccB and (λ∀I xA,B(σ))�A‖B = λσ[∀I x/x] so, following the inductive
definition of term-annotation on interaction (see 4.29), it is easy to show that
(λ∃tB~∀I xA,B(σ))�A‖B‖B = λ ccA~σ[t/x] the key point being that λ∃tB~∀I xA,B(σ)(∀I x) =
λ∃tB(∃) = t.

Weak commutation The above lemma proves that our interpretation
leaves  ∀/∃ invariant; the counter-example below, however, shows that it
fails  Cut/∀.
Example 6.1. Consider the following two first order classical proofs:

`x,y ⊥,>
Ax

`x,y ∃x⊥,>
∃I, x := y

` ∃z.⊥,∀x∀y.>
∀I

`z ⊥,>
Ax

`z ∃x∃y.⊥,>
∃I,

{
x := z
y := c

` ∃x∃y.⊥,∀z.>
∀I

Their interpretations yield two winning strategies σ : ∀11 + // ∀2∀31 and τ :
∀2∀31 + // ∀41:

∀11 |σ // ∀2∀31 ∀2∀31 |τ // ∀41
	2_���

	4*qqx	3
+rry

⊕	4
2_���

⊕	3
1 ⊕c

3

where we omit the annotation of negative events, forced by Σ-receptivity.
In particular, τ = ∀I x(∀2∀31),1(⊕x2 _ ⊕c

3). However, composing σ and
τ yields τ � σ = 	4 _ ⊕c

1, which cannot be of the form ∀I x∀11,1 as this
construction would put no causal link from 	4 to ⊕c

1, since c does not involve
the variable x. Hence ∀I does not commute with composition, failing to be
the natural bijection expected in the adjunction of a hyperdoctrine.
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The intuition behind this failure is that ∀I xA,B only introduces causal links
in a minimal way, following occurrences of a variable x. However, after com-
position, we may end up with elementary Σ-strategies that are not minimal,
i.e. that have immediate causal links not reflecting directly a syntactic de-
pendency. In other words, our interpretation of composition remembers more
dependencies than what usual cut elimination would do: the interpretation
of cut-free proofs yield minimal Σ-strategies, while in compositions interpret-
ing cuts, causality may flow through the syntax tree of the cut formula, and
create causal dependencies not reflected in the variables dependencies.

Taking the reverse point of view, we can also say that cut reduction
weakens the causal structure of strategies.

Definition 6.11. For σ, τ : A two winning V-strategies, σ is weaker than
τ , written σ � τ , iff |σ| ⊆ |τ |, C∞(σ) ⊆ C∞(τ), and for all s ∈ |σ|
λσ(s) = λσ′(s).

This obviously defines a partial order which is actually equal to the par-
tial order on elementary T-strategies defined in 4.3, as inclusion of finite
configuration implies inclusion over infinite configurations and Σ is a special
case of inequational theory where only equal terms are related. Hence, from
theorem 4.5, � is a congruence with respect to �, ⊗ and `. Moreover, it is
a direct from its definition to see that the operation ∀I xA,B(−) preserves � on
winning strategies/ So we can actually state:

Proposition 6.3. Let τ : B⊥ ‖ C a winning (V]{x})-strategy and σ : A⊥ ‖ B
a winning V-strategy, then we have:

∀I xB,C(τ)� σ � ∀I xA,C(τ � σ).

Proof. From Lemma 6.9,

(∃xC)� (∀I xB,C(τ)� σ) = (τ � σ)[x/x] = (∃xC)� (∀I xA,C(τ � σ))

hence the left and right strategies have the same causal structure and term-
annotations after their ∀-prefix. These two share the same annotation (by
Σ-receptivity) hence, the two strategies can only differ on which events can
depend on it.

If an event depends on the ∀-prefix on the right hand side, then its labeling
contains x, and so it must depend on the ∀-prefix on the left hand side as
well. From that observation the inequality follows.

As � is preserved by all operations on Σ-strategies, we deduce:
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Theorem 6.3. Let  denote the standard cut reduction in first-order MLL.
Then, for two proofs π and π′ of a sequent `V Γ, we have

π  π′ =⇒ Jπ′K` � JπK`

In lemma 6.3, the left and right strategies have the same terms on common
events and also the same events, so only their partial order differ (see details
in the proof above). In other words, the two strategies correspond to the
same expansion tree, but differ on their acyclicity witnesses.

Unfortunately, the variant of � with |σ1| = |σ2| is not a congruence in
V-Games: in general, relaxing causality of σ in τ �σ may unlock new events,
previously part of a causal loop. So, as it stands, we cannot generalise the
above remark to any two interpretations. Yet, for MLL1, we conjecture that
“having the same expansion tree” (i.e. same events and term annotations)
is actually a congruence, yielding a ∗-autonomous hyperdoctrine. However
investigating this is left for future work.



Chapter 7

An interpretation of LK1

In this chapter we finally give our interpretation for the full classical se-
quent calculus presented in section 5.1. Unlike for MLL1, there is no hope
of preserving its unrestricted cut reduction without collapsing to a boolean
algebra [Gir91], so in the first section we only aim to map proofs to winning
strategies on the appropriate game, with no care for cut elimination.

In the last section however, we investigate the computational content
of LK1 reflected in our model. In particular, we show that certain proofs
with cuts lead to infinite strategies, closely related to the absence of strong
normalisation in LK1. In the intermediate section we prove that this phe-
nomenon can yet be counterbalanced by deriving a finite top-winning prefix
from any infinite strategy, yielding to our compositional version of Herbrand’s
theorem.

7.1 Interpretation of LK1 proofs
In this section we focus on the interpretation of proofs of the full classical
sequent calculus as winning strategies in (V-)Games. From the interpre-
tation of MLL1 introduced in the previous chapter, what remains are the
interpretation of the contraction and weakening rules.

Weakening is easy:

Lemma 7.1. For any V-games A, there is a winning V-strategy

eA : A + // 1.

For definiteness, we take eA to be the minimal one.

Proof. The strategy eA is simply closed under receptivity: it comprises the
minimal negative events of A⊥, annotated with themselves. It is clearly
winning by definition of winning on 1.

Contraction is much more subtle: we expect to interpret the contraction
rule on a formula ϕ ∈ Form(V) via some winning V-strategy

δϕ : JϕKV
V-Games

+ // JϕKV ⊗ JϕKV
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Being linear, the interpretation J−K`V for first order formulas presented in
the previous chapter cannot validate such a requirement. A simple counter-
example is the following.
Example 7.1. Consider ϕ = ∀x.P(x). Then to win on

∃.¬P(∃) ` (∀1.P(∀1)⊗ ∀2.P(∀2))

Player must play its ∃-move (otherwise it loses on the +-maximal config-
uration {∀1}). Furthermore, in order to win on the +-maximal configura-
tion {∃,∀1}, she must have chosen ∀1 as witness for its ∃-move (otherwise
¬P(∃)∨(∀1∧>) is not a tautology). But, the same reasoning holds on {∃,∀2}
with witness ∀2. So Player will necessarily lose on at least one of these two
+-maximal configurations.

So Player needs to be able to propagate both Opponent moves. For that
we reinstate ? in the interpretation of the existential quantifier, as this was in
the ∃-biased interpretation, i.e. J∃xϕKV = ?∃x JϕKV]x. This is not a surprise
as, in classical logic, a proof (Player) may provide several witnesses for an
existential quantifier. But our games model is symmetric – so that we can
compose strategies – thus, for duality, we also need to allow Opponent to
perform multiple attempts. We set:

Definition 7.1. To each ϕ ∈ FormΣ(V) we associate JϕKV a V-game. The
interpretation function J−KV is defined as in figure 6.1 (with ⊗ considered as
∧, 1 considered as > and ` considered as ∨) together with the two clauses:

J∃xϕKV = ?∃x.JϕKV]{x} J∀xϕKV = !∀x.JϕKV]{x}

Having replication on ∀bélard moves means that we lose finiteness: by
definition of strategies, ∃loïse must be reactive to the infinite number of copies
potentially opened by ∀bélard.

This definition also means that we will need to revisit the interpretation
of rules for quantifiers as the interpretation of formulas has changed. Yet we
will see that it allows to interpret contraction, finding an appropriate winning
V-strategy δϕ : JϕKV + // JϕKV ⊗ JϕKV for every formula ϕ ∈ FormΣ(V).

Figure 7.1 presents two simple instances of these contraction strategies
(without term annotations). The first looks like the usual contraction of AJM
games [AJM00]. It will be used to interpret the contraction rule on existential
formulas, where it has the effect of taking the union of the different witnesses
proposed by Player.

The second is less common in proof interpretations and is related to the
contraction on universal formulas also in used in LK. It is however very sim-
ilar to the interpretation of the parallel command of programming language



7.1 Interpretation of LK1 proofs 173
!∀x. 1 |Ga// !∀x. 1⊗!∀x. 1

(i, ∀)8ww�
(j,∀)

#nnt

(2i, ∃)
(2j + 1,∃)

?∃x. 1 |Ga// ?∃x. 1⊗?∃x. 1
(i, ∀)

� ''. � &&-(i,∃) (i,∃)

Figure 7.1: Two examples of contraction

(cf. example 4.1) : any witness proposed by ∀bélard is propagated to both
branches to ensure a win.

In order to define these contraction strategies along with the tools to
revisit the introduction rules for quantifiers, we first study some properties
of the exponential modalities ! and ?.

7.1.1 Exponential functors
Recall the ! and ? constructions on V-games from definition 5.13, they are
dual enrichment with winning conditions of the countable parallel compo-
sition ‖ω on games (see definition 5.12). We now examine their functorial
action. Being only dual on winning conditions we first introduce their com-
mon action on the structure of strategies.

Definition 7.2. Let σ : A⊥ ‖ B be an elementary (Σ ] V)-strategy, the
countable replication of σ is obtained as

⊗ωσ = γA,B ∗ (‖ω σ) : (‖ω A)⊥ ‖ (‖ω B)

where γA,B :‖ω (A⊥ ‖ B) ∼= (‖ω A)⊥ ‖ (‖ω B) is the obvious isomorphism,
and using the renaming operation of definition 4.25.

Countable parallel composition obviously preserves receptivity, courtesy,
Σ-receptivity and Σ-courtesy, so ⊗ωσ is an elementary (Σ ] V)-strategy.
Moreover:

Proposition 7.1. Countable replication yields an (�-order-enriched) func-
tor on elementary (Σ ] V)-strategies:

⊗ω : (Σ ] V)-Det→ (Σ ] V)-Det

Proof. Countable replication is a variant of the functorial action of the binary
tensor ⊗ in (Σ ] V)-Det, we only detail the proof for completeness.

We show the functorial equalities by studying configurations. In what
follows, xσ,i, xτ,i respectively are configurations of σ and τ , and I stands for
a finite subset of ω:
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- Preservation of composition:

C (⊗ω(τ � σ)) C ((⊗ωτ)� (⊗ωσ))
q q

{γA,C(‖i∈I (xτ,i � xσ,i))} = {γA,B(‖i∈I xτ,i)� γB,C(‖i∈I xσ,i)}

- Preservation of identities:

C (⊗ω cc A) C ( cc (‖ωA))
q q

{γA,A(‖i∈I (xA,i v x′A,i))} = {‖i∈I xA,i v‖i∈I x′A,i}

- Preservation of the monoidal structure:

C (⊗ω(τ ⊗ σ)) C ((⊗ωτ)⊗ (⊗ωσ))
q q

{γA⊗B,C⊗D(‖i∈I (xτ,i ⊗ xσ,i))} = {γA,C(‖i∈I xτ,i)⊗ γB,D(‖i∈I xσ,i)}

These equalities moreover preserve term-annotations, yielding functoriality
of ⊗ω on elementary (Σ ] V)-strategies.

Preservation of � is direct: For σ � σ′ : A⊥ ‖ B,

C (⊗ωσ′) = {γA,B(‖i∈ω xσ′)} ⊆ {γA,B(‖i∈ω xσ)} = C (⊗ωσ)

We now prove that this functor yield two functors, ! and ?, on winning
V-strategies,

Lemma 7.2. Let σ : A⊥ ` B be a winning V-strategy. Then,

!σ : (!A)⊥ ` !B ?σ : (?A)⊥ ` ?B

are also winning, where both are defined as ⊗ωσ (definition 7.2).

Proof. This is very similar to the actions of ⊗ and ` on V-strategies: let
x = (‖i xA,i) ‖ (‖i xB,i) ∈ C∞(‖ω σ) be +-maximal. By definition, this
implies that for all i ∈ ω, xA,i ‖ xB,i ∈ C (σ) is +-maximal in σ. Therefore,
(WA(xA,i)⊥∨WB(xB,i))[λσ] is a tautology. It is then elementary to prove that
both W(!A)⊥`!B(x)[λ‖ωσ] and W(?A)⊥`?B(x)[λ‖ωσ] are tautologies as well.

The functoriality of ⊗ω is enough to induce the functoriality of both ! and
?.
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7.1.2 Contraction
Rather than defining directly a contraction strategy

δJϕKV : JϕKV + // JϕKV ⊗ JϕKV

for every ϕ ∈ FormΣ(V), we start by defining several auxiliary strategies that
will help in our model construction.

Dereliction. The first one is dereliction; its behaviour is the same as a
copycat strategy, but it does not follow an isomorphism.

Lemma 7.3. For any V-game A, there is a winning V-strategy (dereliction):

dA : !A + // A

Proof. We define this strategy as playing like copycat on A between the 0-
indexed copy of A on the left component and the right A component; other
copies of A on the left are simply closed under receptivity.

In particular, positive events have annotations λ((1, a)+) = (0, (0, a))−
and λ((0, (0, a))+) = (1, a)− – negative event are annotated with their own
variable, following Σ-receptivity – and configurations are of the form

(‖i∈ω xi) ‖ x ∈ C ((‖ω A) ‖ A)

such that x vA x0, and for all i > 0, polA(xi) ⊆ {−}. Moreover, following
the same reasoning as previously on +-maximal configuration of copycat, if
a configuration is +-maximal in our strategy then x0 = x.

From the above term-annotation, instantiating winning conditions on
(!A)⊥ `A yields the formula (up to bijective renaming):(

WA(x0) ∧
∧

0<i∈ω
WA(xi)

)⊥
∨WA(x0)

which is a tautology.

Perenialization In general, it is not true that one can find a co-dereliction
on a V-game A, that is, a winning strategy on A → !A.
Example 7.2. This is very similar to example 7.1. Consider the game

A = ({	}, [∅ 7→ >; {	} 7→ P(	)])

for some unary predicate P. If winning, a strategy σ : A + // !A must play
its unique positive move on the A component, otherwise x = ∅ ‖ {	i} is
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+-maximal but WA⊥‖!A(x)[λσ] = ⊥∨P(	i) is not a tautology. Now if (0,	)
is plaid then it must have an empty history as otherwise ∅ ‖ {	i} is +-
maximal, for any (1,	i) /∈ [(0,	)]−σ . So, this means that λσ(0,	) = c for
some constant c, but, still, σ fails to win on the +-maximal configuration
{	} ‖ {	i} as the winning condition WA⊥‖!A(x)[λσ] = P(c)⊥ ∨ P(	i) is not
a tautology.

In the above, Player cannot face the exponential power given to Opponent
(one can always find an Opponent move that is not in the causal history of
the Player move). It turns out that for interpreted formulas, the associated
V-games do not face that problem; in this paragraph we show that J−KV
yields perennializable V-games.

Lemma 7.4. Formulas coming from the interpretation are perennializable,
i.e. for each ϕ ∈ FormΣ(V), there is a winning (Σ ] V)-strategy:

coϕ : JϕKV + // !JϕKV

This is proved for all V , by induction on formulas ϕ.
For units and literals, it is clear: their unique maximal configuration is

the empty configuration with winning ¬ϕ∨ (∧i∈ω ϕ) which is a tautology by
idempotence of ∧ up to equivalence.

For other connectives, let us first exhibit some useful copycat-like winning
strategies:

Lemma 7.5. Let A be a V-game. Then the following isomorphisms of games
preserve winning,

!A → !!A !A → !A⊗ !A ?!A → !?A
(〈i, j〉, a) 7→ (i, (j, a)) (2i, a) 7→ (1, (i, a)) (i, (j, a)) 7→ (j, (i, a))

(2i+ 1, a) 7→ (2, (i, a))

!A⊗ !B → !(A⊗ B) !A` !B → !(A` B)
(j, (i, a)) 7→ (i, (j, a)) (j, (i, a)) 7→ (i, (j, a))

Following lemma 6.1 this yields copycat winning strategies of corresponding
domain and codomain.

Proof. These obviously define isomorphisms, that they preserve winning is a
direct verification on the definitions of winning conditions for each construc-
tor under study.

As a side remark, note that not all of these copycat strategies have an
inverse that is also a winning strategy.
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Back to our proof, the first isomorphism in lemma 7.5 provides a co-
dereliction for ϕ = ∀x.ψ. For ϕ = ϕ1 ∧ ϕ2, we have

coϕ1∧ϕ2 = Jϕ1KV ⊗ Jϕ2KV + // !Jϕ1KV ⊗ !Jϕ2KV + // !(Jϕ1KV ⊗ Jϕ2KV)

using induction hypothesis, the functorial action of ⊗ and the above lemma.
The reasoning is the same ϕ = ϕ1 ` ϕ2.

Finally, the only case remaining – and the most interesting one –
is ϕ = ?∃xψ. On one side, induction provides a winning strategy
?∃x.ψ + // ?∃x.!ψ; on the other side the right most isomorphism in lemma 7.5
yields ?!∃xψ + // !?∃xψ. The lemma below sticks the two together by exhibit-
ing a distribution of the existential quantifier over the exponential – modulo
an infinitary explosion – yielding

co∃x.ψ = ?∃xψ + // ?∃x!ψ + // ?!∃xψ + // !?∃xψ

Lemma 7.6. Let A be a (V ]{x})-game. Then, there is a winning (Σ]V)-
strategy:

∃x!A + // !∃xA.

Proof. This strategy is defined as copycat on !A, preceded by an infinitary
trigger: once Opponent plays the existential quantifier on the left, Player
simultaneously forwards it to all copies on the right, i.e. ∀i > 0, (0,∃) _
(1, (i, ∃)) and λ((1, (i,∃))) = (0,∃); plus (necessarily) λ((1,∃)) = (1,∃).

Its +-maximal configurations are thus either ∅, or of the form

(∃.(‖i∈ω xA,i)) ‖ (‖i∈ω (i,∃).yA,i) ∈ C ((∃.!A)⊥ ‖ !∃.A)

with xA,i ‖ yA,i ∈ C ( cc A) +-maximal in cc A so xA,i = yA,i, for every i ∈ ω.
The empty configuration has winning condition > ∨ (∧i∈ω⊥), which is

clearly tautological. Otherwise, term-annotation and winning conditions
yields (a bijective renaming of) the formula(

(
∧
i∈ω
WA(xiA))⊥ ∨ (

∧
i∈ω
WA(xiA))

)
[∃/x]

which is also a tautology.

Truncated comonoids Putting all of the above auxiliary strategies to-
gether, we can finally build contraction strategies for formulas’ interpreta-
tion:
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Corollary 7.1. If ϕ ∈ FormΣ(V), then JϕKV is a “truncated comonoid” in
V-Games, in the sense that there are winning strategies:

eϕ : JϕKV + // 1 δϕ : JϕKV + // JϕKV ⊗ JϕKV

Proof. The former comes from lemma 7.1, while the latter comes from the
composition

JϕKV + // !JϕKV + // !JϕKV ⊗ !JϕKV + // JϕKV ⊗ JϕKV

using lemma 7.4, contraction and dereliction from lemmas 7.5 and 7.3.

7.1.3 Interpretation of proofs
We now conclude by providing an interpretation for all classical proofs. The
interpretation is mostly informed by the interpretation of first-order MLL
from the previous chapter plus the strategies for contraction and weakening
defined above, however there is a small adjustment to make to the interpreta-
tion of introduction rules for quantifiers as we have changed the interpretation
of the corresponding formulas by adding exponentials.

We state our final result:

Theorem 7.1. For all V, there is an interpretation J−KV , which

- to any ϕ ∈ FormΣ(V) associates a V-game JϕKV , and

- to any proof π of a LK sequent `V ϕ1, . . . , ϕn associates a winning
V-strategy:

JϕKV : 1 + // Jϕ1KV ` · · ·` JϕnKV

Proof. We modify the interpretation of MLL by adding interpretations for
contraction and weakening, and adjusting the interpretation of introduction
rules for quantifiers from section 6.2.2, as shown on figure 7.2. This makes
use of the (natural) isomorphism between Γ⊥ + // A and 1 + // Γ`A, and the
(sometimes dualized) winning strategies from corollary 7.1 and lemmas 7.4
and 7.3.

7.2 Compositional Herbrand’s theorem
We reach now what was the first motivation of this work: giving a composi-
tional version of Herbrand’s theorem that remains faithful to both formulas
and proofs.
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+ // ∃x.ϕ

(d(∃ϕ)⊥ )⊥
+ // ?∃x.ϕ

Figure 7.2: Interpretation of the remaining rules of LK

In chapter 5 we intuited how wingames and winning strategies relate to
the modern presentation of Herbrand’s proofs that are expansion trees. We
then showed that on its own, our model is well-suited to interpret first order
classical proofs, with the semantic advantage of being intrinsically composi-
tional. A direct consequence of theorem 7.1 is

Corollary 7.2. For any closed formula ϕ, if |= ϕ then JϕK has a winning
strategy.

What about its contrapositive? Is it possible to extract a proof of ϕ from
any winning strategy σ : JϕK?

As a first example, let us consider the interpretation of a proof π of ` ∃xϕ
where ϕ is quantifier-free formula. This yields a winning strategy on the game
?∃xJϕK{x}. This game has ω positive moves, all associated to the existential
quantifier. A winning strategy on this game must therefore play any subset
of these moves along with annotations by some closed terms (as there are no
Opponent events to provide free variables). The winning condition ensures
exactly that ∨

(i,∃)∈σ
ϕ(λ((i, ∃)))
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is a tautology. This is very close to a Herbrand disjunction as presented in
theorem 5.6, but is not a perfect match: there is a priori no restriction on
the size of σ and it might as well be infinite.

In the next section (subsection 7.3.2) we will see that these strategies
cannot be considered as degenerated: certain may correspond to the inter-
pretation of some finite proofs. However, we now show that for every formulas
ϕ ∈ FormΣ, and every winning strategy on JϕK, it is always possible to ef-
fectively extract a top-winning strategy on the ∃-biased interpretation JϕK∃.
Following expansion trees, we then prove that this defines a cut-free proof
of the sequent ` ϕ. We thus finally state our compositional version of the
Herbrand’s theorem:

Theorem 7.2. For any closed formula ϕ, the following are equivalent:

(1) |= ϕ,

(2) There exists a finite, top-winning Σ-strategy σ : JϕK∃,

(3) There exists a winning Σ-strategy σ : JϕK.

We insist that in (3), σ needs not be finite. Item (3) is our compositional
statement of Herbrand’s theorem: the winning strategies are those computed
by our denotational model. Corollary 7.2 exactly shows that (1) implies (3),
since any proof will yield by interpretation a winning Σ-strategy. We now
end the discussion by showing that (3) implies (2), and (2) implies (1).

(2) implies (1): Top winning strategies yield cut-free proofs

From any finite, top-winning Σ-strategy σ : JϕK∃, we construct a (cut-free)
first-order classical proof. Contraction rules follow ∃loïse’s duplications, in-
troduction rules are inserted in an order respecting ≤σ, and the witness of
∃I are given by λσ.

We show the following more general lemma:

Lemma 7.7. For any sequent `V Γ, if σ : JΓK∃V is a top-winning Σ ] V-
strategy then `V Γ is provable.

Proof. Let |Γ| denotes the size of a sequent, that is, the total number of
propositional connectives and quantifiers from every of its formulas. By
induction on the lexicographic order (|σ|, |Γ|):

- If |Γ| = 0, then Γ only consists of quantifier free formulas such that∨
ϕ∈Γ ϕ is a tautology. Hence, using either Ax or >I, followed by some

weakening, `V Γ is provable.



7.2 Compositional Herbrand’s theorem 181

- If Γ = Γ′, ϕ1∧ϕ2 then we show that σ defines two winning strategies on
JΓ, ϕ1K∃V and JΓ, ϕ2K∃V respectively. By induction these yield two proofs
for `V Γ′, ϕ1 and `V Γ′, ϕ2 respectively, which, applying ∧I, and a series
of contractions, yields a proof for `V Γ.
Let us now detail on the two strategies: they correspond to the restric-
tion of σ to JΓ, ϕ1K∃V and JΓ, ϕ2K∃V together with its term-annotations
except for the negative variables from respectively Jϕ2K∃ and Jϕ1K∃ that
are substituted with some constant c. More formally, for i ∈ {1, 2} we
set σi = σ↓JΓ′,ϕiK, together with λσi = (λσ)�|σi|[c/∀ ∈ Jϕ3−iK∃]. These ob-
viously define elementary Σ]V-strategies, top winning as – forgetting
the interpretation brackets –
WΓ(|σ|)[λσ] = (WΓ′(|σ�Γ′|) ∨ (Wϕ1(|σ�ϕ1 |) ∧Wϕ2(|σ�ϕ2|)))[λσ]

≡ ((WΓ′(|σ�Γ′|) ∨Wϕ1(|σ�ϕ1 |))
∧ (WΓ′(|σ�Γ′|) ∨Wϕ2(|σ�ϕ2|)))[λσ]

= WΓ′,ϕ1(|σ1|)[λσ] ∧WΓ′,ϕ2(|σ2|)[λσ]
is a tautology and thus implies that (WΓ′,ϕ1(σ1))[λσ][c/∀ ∈ Jϕ2K∃] and
(WΓ′,ϕ2(σ2))[λσ][c/∀ ∈ Jϕ1K∃] also are tautological.

- Similarly, if Γ = Γ′,∀x, ϕ then JΓK∃V = JΓ′K∃V`∀.JϕK∃V and, by receptivity
∀ is minimal in σ. Let σ′ = σ↓Γ′`ϕ together with λσ′ = (λσ)�σ′ [x/∀],
this defines a top-winning V ] {x}-strategy on JΓ′, ϕK∃V]x. Hence by
induction we get a proof for `V,x Γ′, ϕ which extends to a proof for
`V Γ using ∀I.

- Now, if Γ = Γ′, ϕ1 ∨ ϕ2 then σ also defines a winning strategy over
JΓ′, ϕ1, ϕ2K∃V (the two V-games are equal), so by induction and ∀I this
yields a proof for Γ.

- Finally, if Γ = Γ′,∃x.ϕ. Then either σ does not play on JϕK∃V , in that
case σ defines a top-winning strategy for JΓ′K∃V and by induction we
have a proof for `V Γ′ which extends to a proof for `V Γ using wk.
Or, σ plays at least one instance ∃i of ∃. W.l.o.g. we can assume that
it is minimal as otherwise we fall back into one of the above cases. By
minimality λσ(∃i) = t ∈ TmΣ(V). Besides σ can also be viewed as
playing on JΓ,∃ϕ,∃ϕK∃V with every move of index i plaid on the right
copy of ∃ϕ and all other moves remaining in the left copy of ϕ. In
that case, the residual strategy σ′ corresponding to σ after its ∃i move
defines a top-winning V-strategy on JΓ′, ∃ϕ, ϕ[t/x]K∃V . By induction this
yields a proof for `V Γ′,∃ϕ, ϕ[t/x] hence for `V Γ, using ∃I followed by
ctr.
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(3) implies (2): Compactness

Finally, we show that one can extract a finite top-winning strategy from
any winning strategy σ : JϕK. First notice that JϕK∃ embeds (subject to
renaming) as a prefix of JϕK. Keeping that renaming silent, we can restrict
σ to JϕK∃ by ignoring ∀bélard’s replications:

Lemma 7.8. For any winning strategy σ : JϕK, setting

|σ∃| = {a ∈ |σ| | [a]σ ⊆ |JϕK∃|}

and inheriting the order, polarity and labelling from σ, we obtain σ∃ : JϕK∃ a
winning strategy.

Proof. Most conditions are straightforward. To show σ∃ : JϕK∃ is winning,
we use that for any +-maximal x ∈ C∞(σ∃), we have x ∈ C∞(σ) +-maximal
as well; indeed this follows from JϕK∃ being itself +-maximal in JϕK.

However, the extracted σ∃ may still not be finite; and indeed it will
not always be. As mentioned earlier, the coming section 7.3.2, describes a
classical proof for which our interpretation yields an infinite strategy, even
after removing ∀bélard’s replications.

Despite this, the compactness theorem for propositional logic entails that
we can always extract a finite top-winning sub-strategy. For σ : JϕK∃ any
elementary Σ-strategy, we write C −(σ) for the set of −-maximal configura-
tions of σ, i.e. they can only be extended in σ by Player moves – inheriting
all structure from σ they correspond to its sub-strategies, as they are auto-
matically receptive. The proof relies on:

Lemma 7.9. Let X be a directed set of −-maximal configurations. Then,
WJϕK∃(

⋃
X) is logically equivalent to ∨x∈XWJϕK∃(x).

Proof. By induction on ϕ, using simple logical equivalences and that if x1 ⊆
x2 are −-maximal configurations, then WJϕK∃(x1) implies WJϕK∃(x2).

We complete the proof: for σ : JϕK∃ a winning strategy, the above lemma
implies that the (potentially infinite) disjunction of finite formulas∨

x∈C ∀(σ)
WJϕK∃(x)[λσ]

is a tautology. So, by the compactness theorem there is a finite X =
{x1, . . . , xn} ⊆ C ∀(σ) such that ∨x∈XWJϕK∃(x)[λσ] is a tautology. W.l.o.g.
X is directed as C ∀(σ) is closed under union so, by Lemma 7.9 again,
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WJϕK∃(
⋃
X)[λσ] is a tautology. So, restricting σ to events ⋃X gives a top-

winning finite sub-strategy of σ.
Although the argument above is non-constructive, the extraction of a

finite sub-strategy can still be performed in an effective way: Σ-strategies and
operations on them can be effectively presented, and the finite top-winning
sub-strategy can be effectively obtained by Markov’s principle.

7.3 Discussion on the computational content
of J−KV

In this last section, we discuss what of the computational behaviour of the
classical sequent calculus is captured in our interpretation of first order clas-
sical proofs as presented in section 7.1.

Although reflecting cut reduction was not a target of this work – our main
focus was on giving a compositional interpretation of Herbrand’s theorem –
this question remains of interest especially since, to our knowledge, our model
is the first semantic model for unrestricted LK1.

We comment on some features of our model, living other questions open
for future work.

7.3.1 Cut reductions
As mentioned in the introduction, classical sequent calculus with unrestricted
cut reduction only has models preserving reduction boolean algebras [Gir91].
So there is no chance for our model to preserve cut reduction. Here we give a
quick overview of what we know or expect of our interpretation with respect
to cut reductions.

Propositional connectives Cut reductions for propositional connectives
are shared by LK and MLL, so following theorem 6.1 they are faithfully
reflected in our model.

Quantifiers The question for quantifiers is more tricky and we do not have
a clear answer for every reduction.

The easy case remains the one of the ∃/cut rule, still valid by associativity
of composition.

For ∃/∀ and ∀/cut reduction rules, one would wish to build on the result
from section 6.2. Two key properties would then need to hold in our model:
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naturality on coϕ, and that dϕ is the left inverse of coϕ

JϕK
coϕ //

σ��

!JϕK
!σ��

JψK
coψ // !JψK

JϕK
coϕ // !JϕK

dϕ��
JϕK

As it stands naturality does not hold for coϕ, simply because it relies on
indices that can be messed up by unrestricted strategies. Extending the
present work with symmetry [CCW19] could probably solve this kind of
non-matching indexes problem. However it is not clear whether that would
be sufficient to prove naturality or not.

Contraction and weakening Let us now discuss the truly classical re-
duction rules depicted in 5.4. As for the ∃/Cut rule, the commutation rules,
W/Cut and C/Cut, are preserved by associativity of composition.

Then, for the W rule, one can note that weakening strategies are natural
in a weak sense.

Lemma 7.10. For every winning V-strategy σ : A + // B, eA � eB � σ.

Proof. This is immediate as every configuration in eA is of the form x = xA ‖
∅ ∈ C (A ‖ 1) and pol(xA) = {+} (as eA is receptive). But by receptivity of σ,
xA ‖ ∅ ∈ C (σ) and is causally compatible with ∅ ‖ ∅ ∈ eB, so x ∈ C (eB � σ).
Their label are obviously equal by Σ-receptivity.

Writing π for the left hand side of the W reduction rule and π′ for its
right hand-side, the lemma above yields Jπ′K � JπK.

Note that there is no chance of improving that result as for example

` >
` >,⊥

W

`x >,⊥
`x >,∃⊥

∃I

` >,∀∃⊥
∀I

` >,∀∃⊥
Cut  

` >
` >,∀∃⊥

W

yield non-equal strategies

1 ` !(∀.?(∃.⊥))

∀0 _ ∃∀00
...

∀i _ ∃∀ii
...

� 1 ` !(∀.?(∃.⊥))
∀0
...

∀i
...
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Contraction strategies however are not natural, not even in a weak sense
as are weakening strategies; so the C reduction rule is not preserved by our
interpretation. As an example, consider the following strategy:

∀ ∧ ∃ →| ∀ ∨ ∃

	xi
1tt}

C{{�

	yj

 ��)

⊕x2i ⊕yj

⊕x2i+1

This strategy is clearly definable as a proof π of e.g. ` ∃z.Q(z) ∨
∀x.⊥,∀y.P(y)∨∃z.¬P(z). Now if π was cut against a proof π′ of ¬(∀y.P(y)∨
∃z.¬P(z)), ending with a contraction, then, for the ctr/cut reduction to hold,
our model would have to satisfy the following naturality square:

∀ ∧ ∃ σ //

δ
��

∀ ∨ ∃
δ
��

(∀ ∧ ∃) ∧ (∀ ∧ ∃) σ∧σ // (∀ ∨ ∃) ∧ (∀ ∨ ∃)

But the upper right path yields the strategy:

∀ ∧ ∃ →| (∀ ∨ ∃) ∧ (∀ ∨ ∃)

	xi
1tt}

C{{�

	yj
 !!*

� ))/

	zk

B{{� |��#

⊕x2i ⊕y2j ⊕y2j

⊕x2i+1 ⊕z2k+1 ⊕z2k+1

whereas the lower left path yields:
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∀ ∧ ∃ →| (∀ ∨ ∃) ∧ (∀ ∨ ∃)

	xi
1tt}

C{{�

L��	

Q���

	yj

 ��)

	zk

 ��)

⊕x4i ⊕yj ⊕zk

⊕x4i+1

⊕x4i+2

⊕x4i+3

so the two paths are strictly incomparable and our model fails the ctr/cut
reduction rule.

As a side note, this also implies that, despite having all the data needed,
our model is not an instance of classical categories as defined by Führman and
Pym’s [FP07]. Those categories are non degenerate order-enriched models
for classical sequent calculus in which reduction is preserved in a lax sense,
that is, π  π′ iff JπK ≥ Jπ′K.

7.3.2 Non-finiteness of the interpretation
As mentioned in the introduction, LK’s reduction rules may lead to infi-
nite reduction paths. A typical example of this is the so called structural
dilemma [DJS97]

$1 =

Ax
` ϕ, ϕ⊥

Ax
` ϕ, ϕ⊥

∧I
` ϕ ∧ ϕ, ϕ⊥, ϕ⊥

C
` ϕ ∧ ϕ, ϕ⊥

Ax
` ϕ, ϕ⊥

Ax
` ϕ, ϕ⊥

∧I
` ϕ, ϕ, ϕ⊥ ∧ ϕ⊥

C
` ϕ, ϕ⊥ ∧ ϕ⊥

Cut
` ϕ ∧ ϕ, ϕ⊥ ∧ ϕ⊥

In the above, there are two possible ways to push the Cut beyond contrac-
tion. Choosing the left one duplicates the right branch and yields two new
ctr/ctr instances on the right. Then, following the upper will ultimately lead
to a new structural dilemma involving the lower one. This process can be
kept forever as the two proofs interact, and try to duplicate one another.

In this section, we show that our model reflects such infinite behaviour by
revisiting this standard pathological example. More precisely, we construct
a LK proof of the formula ∃x.> whose interpretation is infinite, despite the
fact that there is no move by ∀bélard in the game. We take advantage of this
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presentation to detail, as much as reasonable, the corresponding interpreta-
tion, so that the interested reader can see it at play in a non-trivial case. We
start by interpreting the structural dilemma with ϕ = ∀x.⊥ ∨ ∃y.>, which
we shorten as ∀ ∨ ∃ from now on.

Interpretation of $1. We detail the interpretation of $1. We start from
the axioms on the left branch:

rAx
` ϕ, ϕ⊥

z
=

(∀ ∨ ∃) , (∃ ∧ ∀)
∀i

� ''.

∀j
(ppw∃∀jj ∃∀ii

The indices i, j are the copy indices for the ! and ? arising from the
interpretation of formulas, and we only display the term annotations for
∃loïse’s moves. The Σ-strategy above is the copycat Σ-strategy as defined in
definition 2.6.

Interpreting the introduction rule for ∧ simply has the effect of tensoring
two copies of copycat together, obtaining:

tAx
` ϕ, ϕ⊥

Ax
` ϕ, ϕ⊥

∧I
` ϕ ∧ ϕ, ϕ⊥, ϕ⊥

|

=

(∀ ∨ ∃) ∧ (∀ ∨ ∃) , (∃ ∧ ∀) , (∃ ∧ ∀)
∀i

� **0

∀j
� **0

∀k
#nnt

∀l
#nnt∃∀kk ∃∀ll ∃∀ii ∃∀jj

i.e. again copycat, in accordance with the functoriality of ⊗.
Now, to interpret contraction, we need to compose with δ⊥∀∨∃ : (∃ ∧ ∀) ∨

(∃ ∧ ∀) + // ∃ ∧ ∀, where

δ∀∨∃ : (!∀` ?∃) + // (!∀` ?∃)⊗ (!∀` ?∃)

is the contraction on ϕ. Note that this time, we make explicit the expo-
nential modalities. Recall also that this strategy is derived from co∀∨∃ :
(!∀ ` ?∃) + // !(!∀ ` ?∃), which we display below. To display it best we de-
viate from the representation below by showing exactly the correspondence
between copy indices and occurrences of ! and ?, and we omit the terms,
which are trivial and always correspond with the unique predecessor for
∃loïse’s events. We display the Σ-strategy separating two sub-configurations
for clarity; the full Σ-strategy is obtained by taking their union.
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! ∀ ` ? ∃ | // ! (! ∀ ` ? ∃)
(i,

$nnu
(j, ∀) )

(〈i, j〉, ∃)

(i, ∀)
� ''.

 !!*

� ��%

(0, (i, ∃))
(1, (i, ∃))

(n, (i, ∃))

We do not detail the construction of this Σ-strategy, but it is easy to
get from the definitions. This Σ-strategy co∀∨∃ obviously performs an infini-
tary duplication, however it does not show by itself that the interpretation
is infinitary, as co∀∨∃ is just an auxiliary device in the definition of the inter-
pretation, rather than itself the interpretation of a proof.

To get contraction on ϕ from co∀∨∃, we compose it with the derelicted
version of contraction on !ϕ:

!(!∀` ?∃) + // !(!∀` ?∃)⊗ !(!∀` ?∃) + // (!∀` ?∃)⊗ (!∀` ?∃)

which we display here:

! (! ∀` ? ∃) | // (! ∀` ? ∃)⊗ (! ∀` ? ∃)
(i,

/ss{
∀ )

(0, (i,∃) )

((i,
$nnu

∀) )
(1, (i,∃) )

(0, (j, ∀))
� ##+( (j,∃))

(1, (j, ∀))
� ))0( (j,∃))

(i+ 2, (j,∀))

where the final case is just closure under receptivity. Performing the compo-
sition, we get the contraction Σ-strategy δ∀∨∃:
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(! ∀` ? ∃) | // (! ∀` ? ∃) ⊗ (! ∀` ? ∃)
(i,

.ss{
∀ )

(〈0, i〉,∃ )

(i,
$nnu

∀ )
(〈1, i〉,∃ )

( (i,∀))
� ##+ � ))0( (i,∃)) ( (i,∃))

With that in place, we can finally obtain by composition (where we adopt
again the simplified annotation for copy indices, since in this game ! and
? are again always attached to quantifiers – we still omit the trivial term
annotations):

u

ww
v

Ax
` ϕ, ϕ⊥

Ax
` ϕ, ϕ⊥

∧I
` ϕ ∧ ϕ, ϕ⊥, ϕ⊥

C
` ϕ ∧ ϕ, ϕ⊥

}

��
~ =

(∀ ∨ ∃) ∧ (∀ ∨ ∃) , (∃ ∧ ∀)
∀i

� **1∃〈0,i〉
∀j

� ))/∃〈1,j〉
∀k

"mmt $nnu∃k ∃k

The second branch of$1 is symmetric, so we do not make it explicit. Now,
we interpret the Cut rule and the composition yields J$1K below (again, we
omit term annotations which coincide with the unique predecessor for ∃loïse’s
moves).
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(∀ ∨ ∃) ∧ (∀ ∨ ∃) , (∃ ∧ ∀) ∧ (∃ ∧ ∀)
∀i

� **0 � ++1∃〈0,i〉 ∃〈0,i〉
∀j

� ((/ � **0∃〈1,j〉 ∃〈1,j〉
∀k

#nnt &oov∃〈0,k〉 ∃〈0,k〉
∀l

!mms #nnt∃〈1,k〉 ∃〈1,k〉

It is interesting to note that although $1 has arbitrarily large cut-free
forms, the corresponding strategy only plays finitely many ∃loïse moves for
every ∀bélard move. However, we are on the right path to finding a truly
infinitary Σ-strategy.

An infinitary proof. The next step is to set (with s some unary function
symbol):

$2 =

Ax
`x >[s(x)/y],⊥

∃I
`x ∃y.>,⊥

∀I
` ∃y.>,∀x.⊥

W
` ∀x.⊥,∃y.>,∀x.⊥,∃x.>

∨I
` (∀x.⊥ ∨ ∃y.>) ∨ (∀x.⊥ ∨ ∃x.>)

Leaving to the reader the details of the interpretation, we have by design
that J$2K is:

(∀ ∨ ∃) ∨ (∀ ∨ ∃)
∀i ∀j

*qqx∃s(∀j)
〈j,0〉

We now use these to compute the interpretation of:

$3 =
$1

` ϕ ∧ ϕ, ϕ⊥ ∧ ϕ⊥
$2

` (∀ ∨ ∃) ∨ (∀ ∨ ∃)
Cut

` ϕ ∧ ϕ
The associated composition reveals J$3K to be:
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(∀ ∨ ∃) ∧ (∀ ∨ ∃)
∀i

� ((/ � ++1∃s(∀i)
〈0,〈〈0,i〉,0〉〉 ∃s(∀i)

〈0,〈〈0,i〉,0〉〉

∀j'ppw � ''.∃s(∀j)
〈0,〈〈1,j〉,0〉〉 ∃s(∀j)

〈0,〈〈1,j〉,0〉〉

We are almost there. It suffices now to note that $3 provides a proof of

(∃x.> =⇒ ∃x.>) ∧ (∃x.> =⇒ ∃x.>)

These two implications can be composed by cutting $3 against the proof
$4 or (∃ ⇒ ∃) ∧ (∃ ⇒ ∃)⇒ (∃ ⇒ ∃) performing the composition:

$4 =

Ax
` ∀,∃

Ax
` ∀,∃

∧I
` ∀,∃ ∧ ∀,∃

Ax
` ∀,∃

∧I
` ∀,∃ ∧ ∀,∃ ∧ ∀,∃

Ex
` ∃ ∧ ∀,∃ ∧ ∀, ∃,∀

∨I
` (∃ ∧ ∀) ∨ (∃ ∧ ∀),∃ ∨ ∀

with interpretation:

(∃ ∧ ∀) ∨ (∃ ∧ ∀) , ∃ ∨ ∀
∀i

� $$,
∀j

� ##+
∀k

"mmt∃k ∃i ∃j

Write $5 for the proof of ∃x.> ∨ ∀y.⊥ obtained by cutting $3 and $4
in the obvious way. The interpretation of $5 is the composition of J$3K and
J$4K, which triggers the feedback loop causing the infiniteness phenomenon.
We display below the corresponding interaction. For the “synchronised”
part of formulas, we will use 0 for components resulting from matching dual
quantifiers, and ‖ for components resulting for matching dual propositional
connectives. We write ◦ for synchronized events (i.e. of neutral polarity),
and omit copy indices, which get very unwieldy. For readability, we also
annotate the immediate causal links with the sub-proof that they originate
from, i.e. $3 or $4.
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(0 ‖ 0) ‖ (0 ‖ 0) , ∃ ∨ ∀
∀

$4!mms◦∀
$3 � &&- $3

� **1◦s(∀)
$4 � ''.

◦s(∀)
$4 � ''.◦s(∀)

$3(ppw $3 � ''.
∃s(∀)

◦s(s(∀))
$4 � ''.

◦s(s(∀))
$4 � ''.◦s(s(∀))

$3(ppw $3 � ''.
∃s(s(∀))

◦s3(∀)
$4 � ''.

◦s3(∀)
$4 � ''.◦s3(∀)

$3%oou $3 � ))/
∃s3(∀))

. . . . . . . . .

Therefore, after hiding, ∃loïse responds to an initial ∀bélard move ∀ by
playing simultaneously all ∃sn(∀), for n ≥ 1. Finally, cutting $5 against a
proof of ∃x.> playing a constant symbol 0, we get a proof $6 of ` ∃x.>
whose interpretation plays simultaneously all ∃sn(0) for n ≥ 1.

This phenomena could certainly be avoided by adopting a polarized model
– in the sense that formulas/games are equipped with a deterministic reduc-
tion strategies – as e.g. in [DJS97]. This would however means abandoning
our faithfulness to the raw Herbrand content of proofs. The question of
whether one could derive a non-polarized interpretation of classical first-
order logic that stays finitary from the present model remains fully open.
This seems to relate to the fact that syntactic notions of expansion trees
with cuts [Hei10, McK13, HW13] are in general weakly, rather than strongly,
normalizing.



Part III

Resource tracking concurrent
games
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A concurrent semantics for costs

The close correspondence between proofs and programs often reflects in the
fact that models of ones are also models of the others. In part II we have
seen that the concurrent games model with annotated strategies developed
in part I could be used to give a semantics to first order classical proofs.
In this part we present an other application of the same model, this time
in the field of programming language semantics. More precisely, we provide
a quantitative game semantics for the analysis of costs (or resource usage)
of a higher-order concurrent programming language with shared state called
R-IPA (Resource-tracking Idealised Parallel Algol).

Most denotational models are qualitative in nature, meaning that they
ignore efficiency of programs in terms of time, or other resources such as
power or bandwidth. This abstraction is at the core of the methodology of
denotational semantics in that it aims to capture properties that are invariant
under reduction – such as termination or result of computation.

Noting that some instances of the concurrent games model with anno-
tated strategies T-CG introduced in part I are intrinsically quantitative –
as for example R-CG, presented in section 2.3.1, in which strategies carry
real functions as annotations – we provide a general framework for game
semantics based on concurrent games, that keeps track of resources as data
modified throughout execution but not affecting its control flow.

Our leading example is time, but our construction is more general: it is
parametrized by a resource bimonoid R, an algebraic structure representing
resources and their usage. This yields a sound resource-sensitive denotational
model forR-IPA, an affine version of the standard IPA language [GM08] with
a primitive for resource consumption.

In general, our semantics is not adequate with respect to the parallel
operational semantics we give forR-IPA; our model turns out to be more fine
grained on resource usage. Yet, our denotational semantics is not degenerate
as we show that adequacy holds for an operational semantics specialized to
time. Following [Ghi05], we also make use of this adequate interpretation to
give insight on the semantics of programs’ improvement.

Technically, our model is a refinement of the (qualitative) interpretation of
affine IPA described in [CC16]. This interpretation is based on the concurrent
games model of rigid strategies, Strat, as presented in section 4.1.1. This
model has the advantage of making parallelism in computation explicit, which
is essential for capturing parallel resource usage.

This work has been published in [ACL19].
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Related work. To our knowledge, the first denotational model to
cover quantitative aspects of computation such as costs was Ghica’s slot
games [Ghi05]. They are an extension of Ghica and Murawski’s fully abstract
model for a higher-order language with concurrency and shared state [GM08]
that provides an interleaving semantics for the cost of execution in terms of
time. Slot games exploit the intensionality of game semantics and represent
time via special moves called tokens matching the ticks of a clock. They are
fully abstract with respect to the notion of observation in Sands’ operational
theory of improvement [San91].

Although close in spirit, our model differs from slot games in that our cost
analysis is truly concurrent. In contrast with interleavings semantics, our
analysis reflects the fact that resource consumption may combine differently
in parallel and sequentially, and, in particular we can express that the simple
program wait(1) ‖ wait(1) may terminate in 1 second, rather than 2.

As a parametric model, our work is inspired from the more recent quan-
titative, weighted relational model of Laird et al [LMMP13]. Their model is
an enrichment of the relational model of Linear Logic [Ehr12], using weights
from a resource semiring given as parameter. This way, they capture in a
single framework several notions of resources for extensions of PCF, ranging
from time to probabilistic weights.

In comparison with their resource semirings 〈R, 0, 1,+, ·〉, our resource
bimonoids 〈R, 0, ; , ‖,≤〉 differ however significantly: while “;” matches “·” –
the operation expressing the sequential usage of resources –, our “‖” operation
– expressing the consumption of resources in parallel – is new. On the other
hand, we have no counterpart for the “+”, which agglomerates distinct non-
deterministically co-existing executions leading to the same values; instead
our model keeps them separate. Following the collapse from the concurrent
games model to the relational model [CCPW18], we expect our model to
collapse to the one of Laird et al for an affine version of PCF. However this
remains to be formally proved.

Finally, although the constructions are different, it is to note that sim-
ilar parametrizations were introduced for type systems, simultaneously by,
on the one hand, Ghica and Smith [GS14] and, on the other hand, Brunel,
Gaboardi et al [BGMZ14]; the latter with a quantitative realizability deno-
tational model.

Outline. Chapter 8 introduces the language R-IPA. We sketch its inter-
pretation in slot games and present its new parallel operational semantics
together with the notion of resource bimonoids. We then recall the base
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model of rigid R-strategies and restrict it to negative games, constructing
the denotational semantics of R-IPA

In chapter 9 we focus on proving soundness for this model. We then
show adequacy for an operational semantics specialized to time, noting first
that the general parallel operational semantics is too coarse. Finally we give
a semantic interpretation of the notion of improvement of programs in our
model.





Chapter 8

Semantics of R-IPA

This chapter presents a parallel operational semantics and a concurrent game
semantic for costs/resource analysis of a concurrent higher order program-
ming language with shared memory.

The language corresponds to an affine version of IPA (Idealised Paral-
lel Algol [GM08]) in which resource consumption is made explicit by the
introduction of a special primitive consume. Resources are generalised as
resource bimonoids R: algebraic structures that represent resources and their
consumption either sequentially or in parallel. In particular, we will consider
resources such as time or permissions. The resulting language, called R-IPA,
(Resource-tracking Idealised Parallel Algol) is introduced in section 8.1.

In section 8.2, we focus on giving denotational semantics to this new
language. We do so by enriching the concurrent games interpretation of affine
IPA provided in [CC16] withR-annotations. In particular, this interpretation
will be carried out in a negative restriction of the R-Strat model introduced
in chapter 4, providing a cartesian symmetric monoidal closed framework for
the denotation.

As in [CC16] we chose to interpret an affine language: this lets us fo-
cus on the key phenomena which are already at play, avoiding the technical
hindrance caused by replication. As suggested by recent experience with con-
current games [CCPW18, CdVW19], we expect the developments presented
here to extend transparently in the presence of symmetry [CCW15, CCW19];
this would allow us to move to the general (non-affine) setting.

8.1 Operational semantics of R-IPA
This section introduces R-IPA, the basic language under study in the next
two chapters. It is an affine version of Idealized Parallel Algol (IPA) with an
additional primitive for resource consumption. The operational semantics of
R-IPA is close to the cost model of IPA for time consumption considered by
Ghica in [Ghi05], for which he provides a fully abstract interleaving-based
games semantics. Our language however differs in semantics in that it ac-
count for a truly concurrent usage of time. Comparing the two semantics,
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we first recall the interleaving based semantics of affine IPA with costs be-
fore presenting our operational semantics for R-IPA that allows for parallel
reductions.

8.1.1 Affine IPA
Terms and Types We start by introducing the basic language under
study, affine Idealized Parallel Algol (IPA). It is an affine variant of the lan-
guage studied in [GM08], a call-by-name concurrent higher-order language
with shared state. Its types are given by the following grammar:

A,B ::= com | bool |memW |memR | A( B

Here, memW is the type of writeable references and memR is the type
of readable references; the distinction is necessary in this affine setting as
it allows to share accesses to a given state over subprocesses; this should
make more sense in the next paragraph with the typing rules. In the sequel,
non-functional types are called ground types, for which we use the notation
X.

We define terms directly along with their typing rules in Figure 8.1. Con-
texts are simply lists x1 : A1, . . . , xn : An of variable declarations (in which
each variable occurs at most once), and the exchange rule is kept implicit.
Weakening is not a rule but is admissible. We comment on a few aspects of
these rules.

First, observe that the reference constructor new x, y inM binds two vari-
ables x and y, one with a write permission and the other with a read per-
mission. In this way, the permissions of a shared state can be distributed in
different components of e.g. an application or a parallel composition, creating
interferences despite the affine aspect of the language. In examples, we will
often alleviate the introduction of a new state, simply writing new x inM
but using the subscript xR, xW to remind the reader of the affine nature of
the two permissions.

Second, the assignment command, M := tt, seems quite restrictive. Yet,
as the language is affine, a variable can only be written to once, and, as we
consider all variables initialize to ff , the only useful thing to write is tt.

Finally, many rules seem restrictive in that they apply only at ground
type X. In fact, more general rules can be defined as syntactic sugar. For
instance the sequential composition ending on a function type is given by

M ;A(B N = λxA. (M ;B (N x))

and every other construct extends via similar abstractions.
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Γ ` skip : com Γ ` tt : bool Γ ` ff : bool Γ ` ⊥ : X

(x : A) ∈ Γ
Γ ` x : A

Γ, x : A `M : B
Γ ` λx.M : A( B

Γ `M : A( B ∆ ` N : A
Γ,∆ `M N : B

Γ `M : com ∆ ` N : X
Γ,∆ `M ; N : X

Γ `M : com ∆ ` N : X
Γ,∆ `M ‖ N : X

Γ `M : bool ∆ ` N1 : X ∆ ` N2 : X
Γ,∆ ` if M N1N2 : X

Γ `M : memR

Γ ` !M : bool

Γ, x : memW , y : memR `M : X
Γ ` new x, y inM : X

Γ `M : memW

Γ `M :=tt : com

Figure 8.1: Typing rules for affine IPA

Examples. Despite its affine nature, the above language is non-trivial; for
example it entails non-determinism.
Example 8.1. The following term is an implementation for a random coin:

coin = (new x in xW :=tt ‖ !xR) : bool

It simply reads and writes concurrently to the same memory cell.
Affine IPA can also express more complex programs such as strictness

testing (as introduced in example 4.4):

strict : (com( com)( bool =
(λ fcom(com. new x in f (xW :=tt); !xR)

or parallel testing:

λ fcom(com(com.new x, y, u, v in
f (if (!xR) (skip) (uW :=tt; yW :=tt))

(if (!yR) (skip) (vW :=tt; xR :=tt)) ;
(!uR) and (!vR)

: (com( com( com)( bool

that is, a function which on f : com ( com ( com returns true only
if f returns after a concurrent call to its arguments (in the above and is a
shorthand for the boolean “and” function λxbool.λybool.if x y ff).
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Memory states. The operational semantics of IPA acts on configurations
defined as pairs 〈M, s〉 with s a store (yet to be defined) and Γ ` M : A a
term whose free variables are all of memory types (memR,memX).

More precisely, we fix a countable set L of memory locations. Each loca-
tion ` comes with two associated typed variables `R : memR, `W : memW

distinct from other variable names. Usually, stores are partial maps from L
to {tt, ff}. Instead, we find it more convenient for the definition of parallel
reduction to introduce the notion of state of a memory location.

Definition 8.1. Let R be an ordered set, then the set of states over R and
accessibility relation on it, written (M,≤M), is defined by the following state
diagram: for every α < β ∈ R,

ε
yy %%

Rα

��
Wα

��
RαW β WαRβ

Ignoring R and the superscripts α, β for now, a state simply corresponds
to a history of memory actions (reads or writes). For each m ∈ M, its set of
available actions is

act(m) = {W,R} \m
i.e. the letters not occurring in m – annotations being ignored; and its value
(in {tt, ff}) is

val(m) =
{

tt if W occurs in m,
ff otherwise.

Finally, a store is a partial map s : L ⇀ M with finite domain, mapping
each memory location to its current state. To each store corresponds a typing
context

Ω(s) = {`X : memX | ` ∈ dom(s) & X ∈ act(s(`))}.
Getting back to configurations, we say that a pair 〈M, s〉 is a valid config-
uration iff M can be typed in Ω(s), meaning that every free variables in
M corresponds to a memory location in the store s whose available actions
allows for the variable to be used.

Interleaving based operational semantics. The one-step reductions of
(call-by-name) affine IPA correspond to the basic reductions depicted on
figure 8.2 together with the following contextual rule

〈M, s〉 → 〈M ′, s′〉
〈E [M ], s〉 → 〈E [M ′], s′〉
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〈skip; M, s〉 → 〈M, s〉
〈skip ‖M, s〉 → 〈M, s〉
〈M ‖ skip, s〉 → 〈M, s〉
〈if ttN1N2, s〉 → 〈N1, s〉
〈if ff N1N2, s〉 → 〈N2, s〉
〈(λx.M)N, s〉 → 〈M [N/x], s〉

〈!`R, s〉 → 〈val(s(`)), s[` 7→ s(`).R]〉
〈`W :=tt, s〉 → 〈skip, s[` 7→ s(`).W 〉

〈new x, y inM, s〉 → 〈M [`W/x, `R/y], s ] {` 7→ ε}〉

Figure 8.2: Operational semantics of IPA: basic rules

where E [] range over the usual call-by-name evaluation contexts defined by:

E [] ::= [] | []N | []; N | if []N1N2 | [] := tt | ![] | ([] ‖ N) | (M ‖ [])

This set of one-step reduction rules define an interleaving-based opera-
tional semantics for affine IPA: a configuration 〈M, s〉 reduces to a configu-
ration 〈M ′, s′〉 if there exists a reduction path 〈M, s〉 → · · · → 〈M ′, s〉. The
resulting rewriting system is non-deterministic, for example 〈coin, ∅〉 reduces
to two normal forms (i.e. irreducible configurations) of respective value tt
and ff :

〈coin, ∅〉 → 〈`W :=tt ‖ !`R, [` 7→ ε]〉 →2 〈!`R, [` 7→ W ]〉 → 〈tt, [` 7→ WR]〉

〈coin, ∅〉 → 〈`W :=tt ‖ !`R, [` 7→ ε]〉 →2 〈`W :=tt ‖ ff , [` 7→ R]〉 →2 〈ff , [` 7→ RW ]〉

A game semantics Ghica and Murawski [GM08] have constructed a fully
abstract (for may-equivalence) model for (non-affine) IPA, relying on an ex-
tension of Hyland-Ong games [HO00].

As in the above, their model takes an interleaving view of the execution
of concurrent programs: a program is represented by the set of all its possible
executions, as decided non-deterministically by the scheduler. In traditional
game semantics, where execution (or play) are represented as sequences of
moves, this is captured by removing the requirement that the two players
alternate. For instance, the diagram below shows a play in the interpretation
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of the open program x : com, y : bool ` x ‖ y : bool:

x : com, y : bool ` bool
q−

run+

q+

tt−
done−

tt+

Contrary to concurrent games, the above diagram is read sequentially
(chronologically), from top to bottom. Each line comprises one computa-
tional event (move), annotated with “−” if due to the execution environment
(Opponent) and with “+” if due to the program (Player). Each move cor-
responds to a certain type component, under which it is placed. With the
first move q−, the environment initiates the computation. Player then plays
run+, triggering the evaluation of x. In standard sequential game semantics,
the control would then go back to the execution environment – Player would
be stuck until Opponent plays. Here instead, due to parallelism Player can
play a second move q+ immediately. At this point of execution, x and y are
both running in parallel. Only when they have both returned (moves done−
and tt−) is Player able to respond tt+, terminating the computation.

The full interpretation of x : com, y : bool ` x ‖ y : bool, is a strategy
that comprises numerous plays like that, one for each interleaving.

8.1.2 Cost semantics and R-IPA
As already mentioned, Ghica and Murawski’s model is invariant under re-
duction: if 〈M, s〉 → 〈M ′, s′〉, both have the same denotation. The model
adequately describes the result of computation, but not its cost with respect
to some resource consumption, as for instance with respect to time consump-
tion, which we shall now describe.

R-IPA. Consider a set R of resources. Following [San91, Ghi05], one way
to associate it with a cost semantics for IPA is to define a cost model assigning
a cost to all basic operations. For example, every reductions on figure 8.3
would be restated as:

〈!`R, s〉 →α 〈val(s(`)), s[` 7→ s(`).R]〉
〈(λx.M)N, s〉 →α′ 〈M [N/x], s〉

· · ·
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for some basic costs α, α′, . . . ∈ R. To get the cost of general reduction paths,
one then also needs an associative operation on R, the sequential operation
written “;”, such that for α, β ∈ R, α; β ∈ R corresponds to the resource
taken by consuming α, then β. In the case of time, one can simply choose R
to be the non-negative reals R+ together with addition. The total cost of a
reduction path then is the sum (or the “;”-concatenation) of the costs of all
basic reductions in the path.

For clarity, we choose another way to define costs on affine IPA: instead of
enriching every reduction rule with costs, we separate resource consumption
from the rest of the computational features and add a new construction,
consume(α), to the language. This defines R-IPA, that is, IPA plus the
typing rule:

(α ∈ R)
Γ ` consume(α) : com

(consume)

When evaluated, consume(α) triggers the consumption of resource α ∈ R.
In the case of our running example of time consumption, we will use wait(t),
for t ∈ R+, as a synonym for consume(t).

To evaluate programs in R-IPA, the configurations are now triples
〈M, s, α〉 with α ∈ R tracking the resources already spent. Figure 8.3
presents the basic reduction rules associated to them. One can note that
the basic reduction rules of IPA presented in figure 8.2 are the same, ex-
cept that their left and right hand-side now correspond to triples, for which
the third resource component is left unchanged. The only rule affecting the
current resources is the additional rule for consume(β).

Another specificity is yet to be noted: when performing memory opera-
tions the current state of resources is stored together with the action being
performed, this explains the annotations in definition 8.1. These annotations
do not impact the operational behaviour, but will be helpful in relating with
the game semantics in Section 8.2.

Finally, in order to initialize a run, we also require (R, ; ) to be a monoid,
that is, to have a null resource 0 ∈ R that is neutral for sequential composi-
tion. For time we obviously take R = (R+, 0,+).

Using the rules of figure 8.3 within the same call-by-name evaluation
contexts as previously, there is a direct translation from IPA in a given cost
model to R-IPA, that is such that a program and its translation are bisimilar
and reduce to the same value with the same cost. Roughly speaking, this
is achieved by inserting consume concomitantly with the costly operations,
e.g. :

!x  consume(α); !x
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〈skip; M, s, α〉 → 〈M, s, α〉
〈skip ‖M, s, α〉 → 〈M, s, α〉
〈M ‖ skip, s, α〉 → 〈M, s, α〉
〈if ttN1N2, s, α〉 → 〈N1, s, α〉
〈if ff N1N2, s, α〉 → 〈N2, s, α〉
〈(λx.M)N, s, α〉 → 〈M [N/x], s, α〉

〈!`R, s, α〉 → 〈val(s(`)), s[` 7→ s(`).Rα], α〉
〈`W :=tt, s, α〉 → 〈skip, s[` 7→ s(`).Wα], α〉

〈new x, y inM, s, α〉 → 〈M [`W/x, `R/y], s ] {` 7→ ε}, α〉
〈consume(β), s, α〉 → 〈skip, s, α; β〉

Figure 8.3: Operational semantics: basic rules

We do not expend on that but leave [LMMP13] as a reference. Instead, we
now discuss the choice of an interleaving operational semantics.

Slot Games. Slot games are an extension of the interleaving based model
of IPA presented above to capture resource consumption [Ghi05]. These
games introduce a new action $ called a token that represents an atomic
resource consumption – writing n for n successive occurrences of $ .

In a model of N+-IPA using slot games, the term 1

H = (wait(1); x; wait(2)) ‖ (wait(2); y; wait(1))

in context x : com, y : bool, would for instance have the play depicted on
figure 8.4 in its interpretation (among with many others).

Following the methodology of game semantics, the interpretation of P =
(λxy.H) skip tt would then arise by composition with the interpretations of
constants skip and tt, respectively described by their (usual) maximal plays:

com bool
run− and q−

done+ tt+

This would yield the strategy with only maximal play q− 6 tt+, where 6
reflects the overall 6 time units (say “seconds”) that have to pass in total
before we see the result (3 in each thread).

1We use here a more liberal typing rule for ‘;’ allowing ybool; zcom : bool to avoid
clutter. This version of “;” can be encoded as if y (z; tt) (z; ff) and we will reuse this trick
in other examples.
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x : com, y : bool ` bool
q−
$

run+

2
q+

tt−
$

done−
2

tt+

Figure 8.4: A play with tokens

This is an adequate computational analysis: the same result would be
obtained by inspecting every possible derivations of P in the interleaving
operational semantics described above. However, this seems wasteful; in a
concurrent setting, we would expect the above term to reduce to tt in only
3 seconds. The difference lies in that both slot games and the operational
semantics given so far implicitly assume a sequential operational model, i.e.
that both threads compete to be scheduled on a single processor. In the
sequel, we lift that assumption and consider semantics that allow for truly
parallel computations.

8.1.3 Non-interleaving operational semantics
With a truly concurrent evaluation in mind, we should be able to prove that
the program P defined in the previous section may terminate in 3 seconds,
rather than 6 – as nothing prevents the two threads from evaluating in par-
allel. Before we update the operational semantics to express that, we enrich
our resource structure to allow it to express the effect of consuming resources
in parallel.

Parallel resource consumption. We now introduce the full algebraic
structure we require for resources.

Definition 8.2. A resource bimonoid is 〈R, 0, ; , ‖,≤〉 where

- 〈R, 0, ; ,≤〉 is an ordered monoid;
- 〈R, 0, ‖,≤〉 is an ordered commutative monoid,
- 0 is bottom for ≤,
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- and ‖ is idempotent, i.e. it satisfies α ‖ α = α.

A resource bimonoid is in particular a concurrent monoid in the sense of
e.g. [HMSW11] – though we take ≤ in the opposite direction, i.e. we read
α ≤R α′ as “α is better/more efficient than α′”. Our idempotence assumption
is rather strong as it entails that α ‖ β is the supremum of α, β ∈ R.
This allows to recover a number of simple laws as, e.g. α ‖ β ≤ α; β,
stating that “parallel is better than sequential”, or the exchange rule from
concurrent monoids: (α; β) ‖ (α′; β′) ≤ (α ‖ α′); (β ‖ β′). Idempotence,
which would not be needed for a purely functional language, is used crucially
in our interpretation of state.

Our leading example of resource is time represented by the bimonoids
〈N+, 0,+,max,≤〉 or 〈R+, 0,+,max,≤〉 – we call the latter the time bi-
monoid. Other examples are the permission bimonoid 〈P(P ), ∅,∪,∪, ⊆〉 for
some set P of permissions: here (; ) and (‖) are the same since, for reaching
a state that requires certain permissions, it does not matter whether these
permissions have been requested sequentially or in parallel; the bimonoid of
parametrized time 〈M, 0, ; , ‖,≤〉 withM the non-decreasing functions from
positive reals to positive reals, 0 the constant function, (‖) the pointwise
maximum, and (f ; g)(x) = f(x) + g(x + f(x)): this bimonoid tracks time
consumption in a context where the time taken by consume(α) might grow
over time.

Besides time-based bimonoids, it would be appealing to cover resources
such as power, bandwith or heapspace. Those, however, fail idempotence of
(‖), and are therefore not covered. It is not clear how to extend our model
to those.

Parallel operational semantics. Let us fix a resource bimonoid R. To
express parallel resource consumption, we move from the single-step contex-
tual rule given in section 8.1.1 to the many-step parallel reductions⇒ defined
in figure 8.5.

The first four rules, are simply the reflexive, transitive and contextual
rules for many-steps reductions, together with the fact that a single-step re-
duction is a many-step reduction. Without the fifth rule (that really imple-
ments the parallel reductions), this system behaves exactly as the interleaving
base semantics.

The fifth rule, for parallel composition, carries some restrictions regarding
memory: M and N can only reduce concurrently if they do not access the
same memory cells. This is achieved by requiring that the partial operation
s ↑ s′ – that intuitively corresponds to “merging” two memory stores s and
s′ whenever there are no conflicts – is defined. More formally, the partial
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〈M, s, α〉⇒ 〈M, s, α〉
rfl

〈M, s, α〉 → 〈M ′, s′, α′〉
〈M, s, α〉⇒ 〈M ′, s′, α′〉

otm

〈M, s, α〉⇒ 〈M ′, s′, α′〉
〈E [M ], s, α〉⇒ 〈E [M ′], s′, α′〉

ctx

〈M, s, α〉⇒ 〈M ′, s′, α′〉 〈M ′, s′, α′〉⇒ 〈M ′′, s′′, α′′〉
〈M, s, α〉⇒ 〈M ′′, s′′, α′′〉

trs

〈M, s, α〉⇒ 〈M ′, s′, α′〉 〈N, s, α〉⇒ 〈N ′, s′′, α′′〉
〈M ‖ N, s, α〉⇒ 〈M ′ ‖ N ′, s′ ↑ s′′, α′ ‖ α′′〉

par

Figure 8.5: Rules for parallel reduction

order ≤M on memory states induces a partial order (also written ≤M) on
stores, defined by s ≤M s′ iff dom(s) ⊆ dom(s′) and for every ` ∈ dom(s),
s(`) ≤M s′(`). We have

Lemma 8.1. Two stores s1 and s2 have an upper bound, say s1 and s2 are
compatible, iff for all ` ∈ dom(s1) ∩ dom(s2), s1(`) ≤M s2(`) or s2(`) ≤M
s1(`).

In that case s1, s2 have a least upper bound, denoted s1 ↑ s2.

Proof. First note that the order ≤M on memory states is a complete partial
order. So if s1 and s2 have an upper bound s, then, for all ` ∈ dom(s1) ∩
dom(s2), s1(`) ≤M s(`) and s2(`) ≤M s(`) so {s1(`), s2(`)} is directed in M
and either s1(`) ≤M s2(`) or s2(`) ≤M s1(`).

Conversely, if for all ` ∈ dom(s1) ∩ dom(s2), s1(`) ≤M s2(`) or s2(`) ≤M
s1(`) then let s : dom(s1) ∪ dom(s2)→ M such that

s(`) = max ({si(`) | ` ∈ dom(si) ∧ i ∈ {1, 2}})

then s is an upper bound for s1 and s2. In fact it is their least upper
bound.

The above lemma says that if s′ ↑ s′′ is defined in the parallel rule, then
there has been no interference going to s′ and s′′ from their last common
ancestor s. When compatible, s′ ↑ s′′ maps s′ and s′′ to their least upper
bound, and is undefined otherwise.
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Definition 8.3. For ` M : com, we say that M may converge with cost α,
written M ⇓α, if 〈M, ∅, 0〉⇒ 〈skip, s, α〉.

For instance, instantiating the rules with the time bimonoid, we have

(wait(1); wait(2)) ‖ (wait(2); wait(1)) ⇓3

R-IPA with⇒ enjoys a subject reduction property. More generally, writ-
ing α(m) for the maximal annotation on a state m ∈M (taking 0 if m = ε),
we say that a configuration 〈M, s, α〉 is valid if 〈M, s〉 is valid and for every
` ∈ dom(s), α(s(`)) ≤ α. We have:

Lemma 8.2. Let 〈M, s, α〉 be a valid configuration with Ω(s) ` M : A and
〈M, s, α〉⇒ 〈M ′, s′, α′〉, then 〈M ′, s′, α′〉 is valid with Ω(s′) `M ′ : A

Moreover, s′ = s′1 ] s′2 such that dom(s′1) = dom(s) and s ≤M s′1.

Proof. By induction on the reduction tree, this is a direct check from the →
and ⇒ rules.

8.2 R-strategies for R-IPA
To capture the parallel resource usage of R-IPA terms semantically, we build
on the games model for affine IPA presented in [CC16], enriching it with
R-annotations, as described in chapter 4. Rather than presenting programs
as collections of sequences of moves expressing all observable sequences of
computational actions, this denotation adopts a truly concurrent view using
rigidR-strategies to represents programs, that are, collections of (annotated)
partially ordered plays.

For each Player move, the order specifies its causal dependencies, i.e. the
Opponent moves that need to have happened before. For instance, ignoring
the subscripts, figure 8.6 displays a typical partially ordered play in the
strategy for the term H of Section 8.1.3. Note that one partially ordered play
does not fully specify a sequential execution: the one in figure 8.6 stands for
many sequential executions, one of which is the one depicted in figure 8.4.

The behaviours expressed by partially ordered plays are deterministic up
to choices of the scheduler – irrelevant for the eventual result. Because R-
IPA is non-deterministic (via concurrency and shared state), strategies are
rigid strategies in the sens of chapter 4, that is, they are sets of partially
order plays.

To express resources, we leverage the causal information and indicate,
in each partially ordered play and for each positive move, an R-expression
representing its cost in function of the cost of its negative dependencies.
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x : com, y : bool ` bool

q−x
&oov ,rrzrun+

x; 1
_���

q+
x; 2

_���
done−y

� ((/

tt−z
� ##+
tt+

(y; 2)‖(z; 1)

Figure 8.6: A parallel R-play

Figure 8.6 displays such a R-play: each Opponent move introduces a fresh
variable, which can be used in theR-expressions for Player moves. As we will
see further on, once applied to the strategies that denote the values skip and
tt (with no additional cost), this R-play will answer to the initial Opponent
move q−x with tt+

x;α where α = (1; 2) ‖ (2; 1) ≡R+ 3, as prescribed by the
more efficient parallel operational semantics.

We now go on to define formally our semantics.

8.2.1 Arenas and rigid R-Strategies
Arenas. We first introduce arenas, the semantic representation of types
in our model. As in [CC16], an arena will be a certain kind of game (see
definition 1.5).

Definition 8.4. An arena is (A,≤A,#A, polA), an event structure with
polarities subject to:

(i) ≤A is forest-shaped;

(ii) _A is alternating: if a1 _A a2, then polA(a1) 6= polA(a2);

(iii) it is race-free, i.e. if a1 ∼A a2, then polA(a1) = polA(a2).

Arenas present the computational actions available on a type, following
a call-by-name evaluation strategy. For instance, the observable actions of a
closed term on com are that it can be ran, and it may terminate, leading
to the arena com = run− _ done+. Likewise, a boolean can be evaluated
(i.e. the environment is asking for a value), and it can terminate on either tt
or ff . This yields the arena on the right of Figure 8.7 (when drawing arenas,
immediate causality is written with a dotted line, from top to bottom).
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x : com, y : bool ` bool

run+ q+ q−

done− tt− ff−tt+ ff+

Figure 8.7: An arena for a typing judgement

Constructions on games can be restricted to arenas. Recall: the empty
arena, written 1, has no events; the dual of an arena A is A⊥ with same
components, but polarities reversed; the parallel composition of A and B,
written A ‖ B, has as events the tagged disjoint union {1} × A ∪ {2} × B,
and all other components inherited. The configurations of A ‖ B are written
xA ‖ xB for xA ∈ C (A) and xB ∈ C (B). Figure 8.7 displays the arena
com⊥ ‖ bool⊥ ‖ bool.

Rigid R-strategies. As hinted before, programs are going to be inter-
preted as rigid R-strategies over arenas, that are, collections of partially
ordered plays (R-augmentations) with resource annotations in R. Let us
recall some definitions from chapter 4 specialised to R-annotations, in the
light of our coming interpretation.

Definition 8.5 (4.2,4.21). An augmentation on arena A is a finite partial
order q = (|q|,≤q) such that C (q) ⊆ C (A) and is courteous, that is, for all
a1 _q a2, if polA(a1) = + or polA(a2) = −, then a1 _A a2.

A R-augmentation also has an annotation function

λq : (a ∈ |q|) −→
(
R[a]−q → R

)
such that for all a ∈ |q|, λq(a) is non-decreasing with respect to all of its
variables and, if polA(a) = −, then λq(a) is the projection on a, noted
λq(a)(ρ) = ρa for ρ ∈ R[a]−q .

We write R-Aug(A) for the set of R-augmentations on A.

Recall that for q,q′ ∈ R-Aug(A), q is said to be a prefix of q′, or that it is
rigidly embedded in q′, written q ↪→ q

′, if |q| ∈ C (q′), and for all a, a′ ∈ |q|,
a ≤q a′ iff a ≤q′ a′, and λq(a) = λq′(a).

The notion of R-play is formalized by R-augmentations: Figure 8.6
presents an R-augmentation on the arena of Figure 8.7. The functional
dependency in the annotation of positive events is represented by using the
free variables introduced alongside negative events, however this is only a
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memW ‖ memR

wtt−x
_��� � $$,

r−y
_���

ok+
x tt+

x‖y

memW ‖ memR

wtt−x
_���

r−y
_���-ssz

ok+
x‖y ff+

y

Figure 8.8: Maximal R-augmentations of cell

symbolic representation: the formal annotation is a function for each posi-
tive event. In the model of R-IPA, we will only use the particular case where
the annotations of positive events only depend on the annotations of their
immediate predecessors.

Definition 8.6 (4.27). A R-strategy on A is a non-empty prefix-closed set
of R-augmentations σ ⊆ R-Aug(A) which is receptive: for q ∈ σ such that
|q| extends with a− ∈ A (i.e. pol(a) = −, a 6∈ |q|, and |q| ∪ {a} ∈ C (A)),
there is q ↪→ q

′ ∈ σ such that |q′| = |q| ∪ {a}.
If σ is a R-strategy on arena A, we write σ : A.

As noticed in section 4.2.2, R-strategies are fully described by their max-
imal augmentations, i.e. the augmentations that are the prefix of no other
augmentations in the strategy.

Our interpretation of new will use the R-strategy cell : memW ‖ memR

with arenas memW , memR as introduced in figure 1.4. This strategy com-
prises all the R-augmentations rigidly included in either of the two depicted
in figure 8.8. These two maximal augmentations match the race when read-
ing and writing simultaneously: if both wtt− and r− are played concurrently,
the read may return tt+ or ff+, but it can only return tt+ in the presence
of wtt−. Dually, if it returns ff , then, for sure, r− must have happen before
wtt− was acknowledged. At the resource level, the two possible outcomes
induce different annotations: there is no additional cost on memory actions
but every positive move must forward the cost of its predecessor(s).

Categorical structure As explained in sections 4.1.1 and 4.3.2, R-
strategies form a category: considering R-strategies from A to B to be
R-strategies on the compound arena A⊥ ‖ B, they are equipped with a
composition � and identities for it called the copycat R-strategies (see 4.3
and 2.6). Let us recall the techniques for composition.

The composition of R-strategies is based on the more primitive notion of
interactions of R-augmentations:
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xW : memW , xR : memR ` bool
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Figure 8.9: Example of interaction and composition between R+-
augmentations

Definition 8.7 (4.6,4.23). We say that q ∈ R-Aug(A⊥ ‖ B), and p ∈
R-Aug(B⊥ ‖ C) are causally compatible if |q| = xA ‖ xB, |p| = xB ‖ xC , and
the preorder ≤p~q on xA ‖ xB ‖ xC defined as (≤q ∪ ≤p)+ is a partial order.

Saying e ∈ xA ‖ xB ‖ xC is negative if it is negative in A⊥ ‖ C. We define
the interaction p ~ q of compatible q,p to be (xA ‖ xB ‖ xC ,≤p~q, λp~q)
with:

λp~q : (e ∈ xA ‖ xB ‖ xC) −→
(
R[e]−

p~q → R
)

as follows, by well-founded induction on <p~q, for ρ ∈ R[e]−
p~q :

λp~q(e)(ρ) =


λp(e)

(
〈λp~q(e′)(ρ) | e′ ∈ [e]−

p
〉
)

if polB⊥‖C(e) = +,
λq(e)

(
〈λp~q(e′)(ρ) | e′ ∈ [e]−

q
〉
)

if polA⊥‖B(e) = +,
ρe otherwise (e negative).

If σ : A⊥ ‖ B and τ : B⊥ ‖ C, we write τ ~ σ for the set comprising all
p ~ q such that p ∈ τ and q ∈ σ are causally compatible. For q ∈ σ and
p ∈ τ causally compatible with |p ~ q| = xA ‖ xB ‖ xC , their composition
is p � q = (xA ‖ xC ,≤p�q, λp�q) where ≤p�q and λp�q are the restrictions
of ≤p~q and λp~q. Similarly to the interaction, the composition of two R-
strategies σ : A⊥ ‖ B and τ : B⊥ ‖ C is the set comprising all p � q for
q ∈ σ and p ∈ τ causally compatible.

In Figure 8.9, we illustrate the construction of composition between R+-
augmentations – with also in gray the underlying interaction. The reader
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may check that the variant of the left R+-augmentation with tt replaced
with ff is causally compatible with the other augmentation in Figure 8.8,
with composition q−x _ ff+

x; 4.
Finally there is a tensor operation: on arenas, A⊗B is simply a synonym

for A ‖ B; on R-strategies it is defined componentwise from the tensor
product on R-augmentations: q1⊗ q2 ∈ R-Aug((A1⊗A2)⊥ ‖ (B1⊗B2)) for
q1 ∈ R-Aug(A⊥1 ‖ B1) and q2 ∈ R-Aug(A⊥2 ‖ B2).

Following theorem 4.3, we have:

Proposition 8.1. There is a compact closed category R-Strat having arenas
as objects, and as morphisms, R-strategies between them.

8.2.2 Negative interpretation of R-IPA
Negative Arenas and R-Strategies. As a compact closed category,
R-Strat is a model of the linear λ-calculus. However, we will (as usual for
call-by-name) instead interpret R-IPA in a sub-category of negative arenas
and strategies, in which the empty arena 1 is terminal, providing the inter-
pretation of weakening. This sub-category also has products, providing an
interpretation for if . We will stay brief here, as this proceeds exactly as
in [CC16, Cas17].

We say that a partial order with polarities is negative if all its minimal
events are. This applies in particular to arenas, and R-augmentations. By
extension, a R-strategy is negative if all its R-augmentations are. A negative
R-augmentation q ∈ R-Aug(A) is well-threaded if for all a ∈ |q|, [a]q has
exactly a one minimal event. Similarly, aR-strategy is well-threaded iff all its
R-augmentations are. The reader may check that every example presented so
far in this chapter depicts well-threaded R-strategies. Moreover, as arenas
are forest-shaped, all of their events have a unique minimal event in their
causal history, this implies that the copycat strategies on negative arenas are
also well-threaded. We have:

Proposition 8.2. Negative arenas and well-threaded R-strategies form a
cartesian symmetric monoidal closed category R-Strat−, with 1 terminal.

We also write σ : A + // B for morphisms in R-Strat−.

Recall that a monoidal category (C,⊗) is closed if for every object A ∈ C,
the functor _ ⊗ A : C → C has a right adjoint, called its internal-hom.
Compact closed categories (see page 37) are particular cases of monoidal
closed categories where the internal-hom is defined by A∗⊗_ for A∗ the dual
object of A.
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Negative arenas are closed under parallel composition (hence tensor).
However, the dual operation (−)⊥ is not well-defined on negative arenas,
that is why the compact closure of R-Strat does not transport to R-Strat−.
Yet, we can replace the internal-hom of a negative arena A, A⊥ ‖ _, in
R-Strat by a negative version of it, written A ( _. Here we describe only
a restricted case of the general construction in [CC16], which is however
sufficient for the types of R-IPA.

Definition 8.8. If A,B are negative arenas and B is well-opened, i.e. it has
exactly one minimal event b, we form A ( B as having all components as
in A⊥ ‖ B, with additional dependencies {((2, b), (1, a)) | a ∈ A}. For the
empty arena, we set A( 1 = 1.

One can note that strategies over A( B are necessarily well-threaded as
the arena as at most one minimal event. Moreover, the set of (well-threaded)
strategies over A ( B is equal to the set of well-threaded strategies over
A⊥ ‖ B as this arena has at most one negative event that is minimal, hence,
that must be the minimal event of every move in a well-threaded strategy.
More generally, for B well-opened, this allows to type any well-threaded
strategy σ : C⊗A + // B as a well-threaded strategy from C to A( B, then
written Λ(σ) : C + // A( B. Using the compact closed structure of R-Strat,
it is then easy to build a copycat R-strategy evA,B : (A( B)⊗A + // B, the
evaluation strategy of the monoidal closure.

Restricted to negative arenas, one can define the cartesian product of A
and B, written A&B, as having the same components as A ‖ B, except for
the conflict relation which is extended with

(1, a) # (2, b) for all a ∈ A, b ∈ B

We write πi : A1 & A2 + // Ai for the copycat projections, and 〈σ, τ〉 :
A + // B & C for the pairing of σ : A + // B, and τ : A + // C (simply de-
fined as σ ∪ τ with the appropriate renaming of events from B and C).

Finally, for any A, we write !A : A + // 1 for the unique (empty) such
well-threaded R-strategy.

Interpretation Compared to [CC16], there is not much change between
the interpretation of affine IPA and R-IPA. Types are interpreted equally
with: base type com, bool respectively interpreted as in the left and right-
hand side of figure 8.7 (with reverse polarities for com); memW and memR

as in figure 1.4; and JA ( BK = JAK ( JBK, as expected. Then, con-
texts Γ = x1 : A1, . . . , xn : An are interpreted as tensor products of their
components: JΓK = ⊗1≤i≤nJAiK.
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Jλx.M : A( BK = Λ(JMK)
JMA(B N : BK = evA,B � (JMK⊗ JNK)

JM ; N : XK = seqX � (JMK⊗ JNK)
JM ‖ N : XK = parX � (JMK⊗ JNK)

Jif M N1N2 : XK = ifX � (JMK⊗ 〈JN1K, JN2K〉)
J!M : boolK = deref � JMK

JM :=tt : comK = assign� JMK
Jnew x, y inM : XK = JMK� (JΓK⊗ cell)

Figure 8.10: Interpretation of R-IPA

For terms, the interpretation of Γ ` M : A is performed inductively
by mapping to rigid R-strategies JMK : JΓK + // JAK (we will often omit the
interpretation brackets around types).

For constant, the basic strategies are:

- J⊥K : com, the diverging R-strategy with no player move;
- Jconsume(α)K : com, the strategy of maximal R-augmentation

run−x _ done+
x;α, that is, is the strategy that returns with an extra

cost of α;
- JskipK : com, simply equal to Jconsume(0)K, the neutral consumption
for sequential and parallel composition;

- JttK and JffK : bool, the constant R-strategies of maximal augmenta-
tion q−x _ tt+

x and q−x _ ff+
x respectively.

These strategies are pre-composed by the weakening strategy !Γ to associate
them with the right context.

The rest of the interpretation is given in figure 8.10, it follows the standard
interpretation of the affine λ-calculus together with using the R-strategy cell
introduced in Figure 8.8 and the additional R-strategies with maximal R-
augmentations in Figure 8.11.

8.2.3 Pre-orders on R-strategies
Not needed in the mere interpretation of R-IPA, we conclude this section by
introducing two pre-orders on R-strategies that generalise the order on R
and will be needed in the sequel.



218 8. Semantics of R-IPA
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Figure 8.11: Maximal R-augmentations of R-strategies used in the interpre-
tation

Partial orders on R-augmentations As usual we first start by examin-
ing the case on R-augmentations. R-augmentations already enjoy a partial
order: let q,q′ ∈ R-Aug(A), we write q � q

′ iff |q| = |q′| and ≤q ⊆ ≤q′ ,
that is, q and q

′ share the same events but q is less causally constrained.
As shown in section 4.1.1 and lemma 4.3 this partial-order is preserved by
� and ⊗ on R-augmentations (note that in this section we actually use the
sign � in the reversed way) .

Then there are two possible ways to lift the order of R to augmentations:

- either by building on top of �, setting q �R q′ if q � q
′ and for every

a ∈ q, λq(a) ≤R λq′(a) ;

- or by keeping the lift of R on annotations separated from the rest of
the structure, only comparing two R-augmentations if they share the
same underlying plain augmentation, that is, setting q ≤R q′ if q = q

′

as partial order and for every a ∈ q, λq(a) ≤R λq′(a).

Obviously ≤R ⊆ �R and they both define a partial-order. Moreover, by
lemmas 4.18 and 4.19 they are both preserved by composition and tensor on
R-augmentations.

Pre-orders on R-strategies Lifting the partial order �R, ≤R from R-
augmentations on A to R-strategies on A componentwise can be done in
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many ways, depending on the choice made to relate the R-augmentations of
one strategy to the R-augmentations of the strategy it is compared to.

For �R we chose a lax relation: given two R-strategies σ, τ : A, we
write σ �R τ if for every q ∈ τ there exists q′ ∈ σ such that q′ �R q.
This will provide a way to formalise the fact that a strategy (σ) “improves”
an other strategy (τ) as it allows for more interactions with lesser resource
consumption. This only defines a pre-order on R-strategies as not every
augmentation in σ needs to be an “improvement” of an augmentation in τ .
Conversely, an augmentation in σ can improve many augmentations in τ .

For example
u

v
new x in

consume(α); consume(β);
xW :=tt !xR

}

~

u

v
new x in

consume(α); !xR;
consume(β); xW :=tt

}

~

�R
{q−x , q−x _ tt+

x;(α‖β), q−x _ ff+
x;(α‖β)} {q−x , q−x _ ff+

x;α;β}

For≤R, we also choose a lax relation but we keep the focus on annotations
so we set: σ ≤R τ if σ = τ as rigid strategies and for every q′ ∈ τ there exists
q ∈ σ such that q ≤R q

′. This again defines a pre-order on R-strategies,
but a more constrained one: σ interacts the same way as τ does, only more
efficiently. For example

q
consume(α) consume(β)

y
Jconsume(α); consume(β); K

≤R
{run−x , run−x _ done+

x;(α‖β)} {run−x , run−x _ done+
x;α;β}

This also characterises an “improvement” (and we have≤R ⊆�R) but the
first use we will make of ≤R is actually in the proofs of soundness of R-IPA,
showing that if 〈M, s, α〉⇒ 〈M ′, s′, α′〉 then J〈M, s, α〉K ≤R J〈M ′, s′, α′〉K for
an interpretation J−K on configurations yet to be given.

Before moving to this definition, we note that, as a consequence of the
preservation of �R and ≤R by � and ⊗ on R-augmentations, the pre-orders
�R and ≤R on R-strategies are also preserved by the componentwise com-
position and tensor product on R-strategies.





Chapter 9

Soundness and Adequacy

In this chapter we show that the interpretation of R-IPA in the concurrent
games model of rigid R-strategies as presented in chapter 8 is sound. Ade-
quacy however does not hold in general, the operational semantics induces
some artificial synchronisations that increase resource-consumption in com-
parison to what is expected from the denotational semantics. In section 9.2,
we give credit to the game semantics, by showing that in the case of time,
the operational semantics can be refined to get adequacy back. Inspired
by [Ghi05], we finally present how the resulting sound and adequate inter-
pretation of R+-IPA (i.e. R-IPA with the specialised operational semantic
for time) provides insight in the understanding of improvements of programs
in a truly concurrent setting.

9.1 Soundness for R-IPA
In this section, we set to prove that the game semantics of R-IPA described
in section 8.2.2 is sound with respect to its operational semantics given in
section 8.1.3.

We first introduce a useful notation. For any type A, JAK has a unique
minimal event; we write LAM for the arena without this minimal event. Like-
wise, if Γ ` M : A, then by construction, JMK : JΓK⊥ ‖ JAK is a well-
threaded R-strategy whose augmentations all share the same minimal event
q−A,x where q−A is minimal in A and x is the variable name attached to q−A for
convenience in writing function annotations in augmentations. For α ∈ R,
we define LMMα : JΓK⊥ ‖ LAM the R-strategy having the same augmentations
as JMK but without q−A,x, whose corresponding variable x is then replaced by
α. One may think of LMMα as “M started with consumed resource α”.

Naively, one may expect soundness to state that for all ` M : com, if
M ⇓α, then LMM0 = done+

α . However, whereas the resource annotations in
the denotations are always as good as permitted by the causal constraints,
derivations in the operational semantics may be sub-optimal. For instance,
we may derive M ⇓α not using the parallel rule at all. So our statement is:



222 9. Soundness and Adequacy

Theorem 9.1. If `M : com withM ⇓α, then, there is β ≤R α s.t. done+
β ∈

LMM0.

Our proof methodology is standard: we replay operational derivations as
augmentations in the denotational semantics. Stating the invariant success-
fully proved by induction on operational derivations requires some technol-
ogy.

9.1.1 Interpretation of memory states
Configurations of R-IPA are of the form 〈M, s, α〉 with Ω(s) `M : A. In our
game semantics the data of M and α is translated as LMMα : JΩ(s)K + // LAM;
we also need to make sense of the store s.

cell strategies. Following the interpretation of newref , where a single
(fresh) memory location is interpreted by the strategy cell, a memory store
s is associated to a memory strategy cells : JΩ(s)K. More precisely,

cells = ⊗`∈dom(s)cells(`)

for cells(`) the R-strategies given by:

- cellε = cell;
- cellRα has a unique maximal R-augmentation wtt−x _ ok+

x‖α;

- cellWα has a unique maximal R-augmentation r−y _ tt+
α‖y;

- cellRαWβ and cellWαRβ are the empty R-strategy.

A configuration will then be interpreted by the interaction between M and
its memory store s:

J〈M, s, α〉K = LMMα ~ cells
Note that (JMK ~ cells)/qαA = LMMα ~ cells.

Residuation. If s ≤M s′, then s′ can be obtained from s using memory
operations. There is a similar relation between cell strategies expressed via
residuation:

Definition 9.1. Let σ : A be a rigid R-strategy, let q ∈ σ and ρ ∈ R[q]− ,
then, for q′ ∈ σ s.t. q ↪→ q

′ ∈ σ, the residual R-augmentation of q′ after
(q, ρ) is

q
′/(q, ρ) = (q′↓|q′|−|q|, λq′/(q,ρ))
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with ↓ the projection on augmentations given in definition 4.7 and for every
a ∈ |q′/(q, ρ)|+, ρ′ ∈ R[a]−

q′/(q,ρ) ,

λ(a+)(ρ′) = λq′(a)(ρ�[a]−q ∪ ρ
′)

The residual strategy of σ after (q, ρ) is then obtained componentwise by

σ/(q, ρ) : A ↓ (A− |q|) = {q′/(q, ρ) | q ↪→ q
′ ∈ σ}.

Note that the R-strategy LMMα is a particular case of residuation where
σ = JMK, q = q−A,x and ρ(q+

A,x) = α. We have compatibility with the
cartesian monoidal categorical structure:

Proposition 9.1. Let σ : A + // C and τ : B + // D be two rigid R-strategies,
let q ∈ σ, q′ ∈ τ , ρ ∈ R|q|− and ρ′ ∈ R|q′|−, then

σ/(q, ρ)⊗ τ/(q′, ρ′) = (σ ⊗ τ)/(q⊗ q′, ρ⊗ ρ′)

for ρ ⊗ ρ′ the union of ρ and ρ′ with appropriate domain renaming. And
similarly (for ρ, ρ′ with appropriate domain renaming):

〈σ/(q, ρ), τ〉 = 〈σ, τ〉/({0} × q, ρ)
〈σ, τ/(q′, ρ′)〉 = 〈σ, τ〉/({1} × q′, ρ′)

Proof. This is a direct check from the definitions, componentwise on the
R-augmentations in the strategies.

Proposition 9.2. Let σ : A + // B and τ : B + // C be rigid R-strategies, let
q ∈ σ, q′ ∈ τ , ρ ∈ R|q|− and ρ′ ∈ R|q′|− be such that q, q′ are causally
compatible and such that for every e ∈ |q|−, e′ ∈ |q′|− (writing [e]−

q~q for the
set of predecessors of e in q

′ ~ q mapping to (A⊥ ‖ C)−) we have ρ(e) =
λq′~q(e)(ρ ∪ ρ′)�[e]−

q′~q
and ρ′(e′) = λq′~q(e′)(ρ ∪ ρ′)�[e′]−

q′~q
, then

(τ/(q′, ρ′))� (σ/(q, ρ)) = (τ � σ)/(q′ � q, (ρ ∪ ρ′)�A⊥‖C)

Proof. Let us shorten residuations q′/(q, ρ) into q′/q and write ] to empha-
size on the disjoint union of two sets.

First note that for qσ ∈ σ, qτ ∈ τ such that q ↪→ qσ and q′ ↪→ qτ , qσ and
qτ are causally compatible iff qσ/q and qτ/q′ are. Indeed, let q = xA ‖ xB,
q
′ = xB ‖ xC , qσ = (xA ] x′A) ‖ (xB ] x′B) and qτ = (xB ] x′′B) ‖ (xC ] x′C).

Then, qσ agrees with qτ on B iff x′B = x′′B that is iff qσ/q and qτ/q′ agree
on B as well. Furthermore,

(≤qσ ∪ ≤qτ )∗ = ((≤qσ/q ] ≤q) ∪ (≤qτ/q′ ] ≤q′))∗
= ((≤qσ/q ∪ ≤qτ/q′) ] (≤q ∪ ≤q′))∗
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So, by down-closure of q and q
′ in qσ and qτ respectively, (≤qσ ∪ ≤qτ )∗

defines a partial order iff (≤qσ/q ∪ ≤qτ/q′)∗ does (as there are no causal
dependencies from events in |qσ/q| to events in |q| and similarly for |qτ/q′|
and |q′|).

From the above, it is also immediate to see that (qτ ~ qσ)/(q′ ~ q) =
(qτ/q′) ~ (qσ/q) as partial order. Let us write Q for this com-
mon order and compare the annotations from (qτ ~ qσ)/(q′ ~ q)
and (qτ/q′) ~ (qσ/q) inductively on <Q. W.l.o.g we study the
case where e ∈ ((A⊥ ‖ B) − |q|), the other case is symmetric:

λ(qτ~qσ)/(q′~q)(e)(ν)
= λqτ~qσ(e)

(
(ρ ∪ ρ′)�[e]−

qτ~qσ
∪ ν

)
def. residuation

= λqσ(e)
〈
λqτ~qσ(e′)((ρ ∪ ρ′)�[e]−

qτ~qσ
∪ ν)�[e′]−

qτ~qσ

〉
e′∈[e]−qσ

def. interaction

= λqσ(e)
〈
λqτ~qσ(e′)((ρ ∪ ρ′)�[e′]−

qτ~qσ
∪ ν�[e′]−

qτ~qσ
)
〉
e′∈[e]−qσ

distribution of �

= λqσ(e)
〈
λqτ~qσ(e′)((ρ ∪ ρ′)�[e′]−

qτ~qσ
∪ ν�[e′]−Q)

〉
e′∈[e]−

qσ/q

split +

∪
〈
λqτ~qσ(e′)(ρ ∪ ρ′)�[e′]−

qτ~qσ

〉
e′∈[e]−q

dom(ν) ⊆ Q

= λqσ(e)
〈
λ(qτ~qσ)/(q′~q)(e′)(ν�[e′]−Q)

〉
e′∈[e]−

qσ/q

def. residuation

∪〈ρ(e′)〉e′∈[e]−q hypothesis
= λqσ(e)

〈
λ(qτ/q′)~(qσ/q)(e′)(ν�[e′]−Q)

〉
e′∈[e]−

qσ/q

induction

∪ρ�[e]−q
= λqσ/q(e)

〈
λ(qτ/q′)~(qσ/q)(e′)(ν�[e′]−Q)

〉
e′∈[e]−

qσ/q

def. residuation

= λ(qτ/q′)~(qσ/q)(e)(ν) def. interaction

Hence the two augmentations do have the same R-annotations.

Finally, as a combination of projections and instantiations of annotation-
functions preserving the order onR, residuations preserve≤R onR-strategies
and can decomposed:

Lemma 9.1. Let σ : A, q ∈ σ and two valuations ρ, ρ′ ∈ R|q|−, such that
ρ ≤R ρ′, then σ/(q, ρ) ≤R σ/(q, ρ′).

Lemma 9.2. Let σ : A, q ∈ σ, and a valuation ρ ∈ R|q|−, then, for every
σ ≤ σ′ : A with q ≤R q′ ∈ σ′ we have σ/(q, ρ) ≤R σ′/(q′, ρ).

Lemma 9.3. Let σ : A and q0 ↪→ q1 ∈ σ together with a valuation ρ ∈ Rq
−
1 ,

then σ/(q1, ρ) = (σ/(q0, ρ�q0))/(q1/q0, ρ�(q1/q0)).
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Back to the cell strategies, we can now draw a correspondence between
memory states and their corresponding strategies using the residual operation
(with ρ directly specified on q):

ε
.Rα

~~
.Wβ

  
Rα

.Wβ α≤β
��

Wα

.Rα β≤α
��

RαW β WαRβ

J_K−→

cell
/(r−α_ff+

α )
~~

/(wtt−
β

_ok+
β

)

  
cellRα

/(wtt−
β

_ok+
α‖β)
��

cellWβ

/(r−α_tt+
α‖β)

��
cellRαWβ cellWβRα

So, for every s ≤M s′, there is a R-augmentation qsBs′ ∈ cells and a
valuation ρsBs′ defined location-wise that matches the memory operation
from s to s′ and such that cells/(qsBs′ , ρsBs′) = cells′ .

The interaction of a strategy with a memory store strategy is then for-
malised by:

Definition 9.2. Let σ : JΩ(s)K⊥ ‖ LAM be a R-strategy and q ∈ σ be
fully compatible with qsBs′ , that is |q| = |qsBs′|, q and qsBs′ are causally
compatible and for every memory action m ∈ q−sBs′ , λq(m) = ρsBs′(m), then
we write

σ/(q~ qsBs′) : JΩ(s′)K⊥ ‖ LAM

for the residual of σ after (q~ qsBs′ , λq~qsBs′�q−).

This is well defined as for every e ∈ qsBs′ , λq~qsBs′ (e) ∈ R. Informally, the
definition above means that, considering some q which represents a schedul-
ing of the memory operations turning s into s′, we extract from σ its behavior
after the execution of these memory operations.

In the end our key lemma to prove theorem 9.1 will be:

Lemma 9.4. Let Ω(s1) ` M : A and α ∈ R define a valid configuration
such that 〈M, s1, α〉⇒ 〈M ′, s′1]s′2, α′〉 with dom(s1) = dom(s′1). Then, there
exists q ∈ LMMα fully compatible with qs1Bs′1 such that:

LMMα/(q~ qs1Bs′1) ≤R LM ′Mα′ � cells′2
Instantiated with 〈M, ∅, 0〉 ⇒ 〈skip, s, α〉 this lemma yields soundness.

The next two sections explain and prove it, by induction on the operational
semantics. The critical cases are: assignment and dereferenciation exploit-
ing that if α ≤R β, then α ‖ β = β (which boils down to idempotence);
and parallel composition, where compatibility of s′ and s′′ entails that the
corresponding augmentations of cells are disjoint:
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Lemma 9.5. Let s ≤M s′ and s ≤M s′′ be such that s′ and s′′ are compatible,
i.e. s′ ↑ s′′ is defined. Then, we also have s ≤Q s ↑ s′ and

(qsB(s′↑s′′), ρsBs′↑s′′) = (qsBs′ ] qsBs′′ , ρsBs′ ] ρsBs′′)

Proof. Straightforward by definition of JsK location by location.

9.1.2 Single step
We now go with the proof of lemma 9.4 in the case of one-step reduc-
tions. These cases are easy but they provide an incremental explanation
for lemma 9.4. Unless stated otherwise, we assume that Ω(s1) ` M : A and
that 〈M, s1, α〉 defines a valid configuration.

Starting first with a standard substitution lemma:

Lemma 9.6. Let Γ, x : A ` M : B and ∆ ` N : A then Γ,∆ ` M [N/x] : B
and JM [N/x]K = Γ⊗∆

Γ⊗JNK
+ // Γ⊗ A

JMK
+ // B.

Proof. This is a simple consequence of the commutative monoidal structure
of ⊗, the associativity of � and the naturality of Λ, ev, 〈, 〉 and !; noting
that the inductive definition of J−K only uses these ingredients together with
some base strategies for each computational features, and that M being an
affine term, N (and its features) is only found once in M [N/x].

For basic reductions that leave the store unchanged, our semantic then
yields equality:

Lemma 9.7. If 〈M, s1, α〉 → 〈M ′, s1, α〉 then JMK = JM ′K.

Proof. This is a direct verification on the semantics for the cases where M is
skip ‖M2,M1 ‖ skip, skip;M2, if ttM1 M2, if ff M1 M2; and a consequence
of the substitution lemma 9.6 together with monoidal closure for the case of
M = (λx.M ′)N .

For example, let us expand the case ofM1 ‖ skip: by definitionM1 is aR-
strategy whose maximal configuration is either run−x or run−x _ done+

f(x) for
some f : {x} → R. tensoring with JskipK and post-composing with par yields
a maximal configuration that is run−x in the first case and run−x _ done+

0‖f(x)
in the second case, which is indeed equal to JM1K as 0 ‖ f(x) = f(x).

Allowing for resource consumption we have:

Lemma 9.8. If 〈M, s1, α〉 → 〈M ′, s1, α
′〉 then LMMα = LM ′Mα′.
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Proof. The previous lemma induces that this is true on every cases where α =
α′, and we need to check consume(β) separately: in that case α′ = α; β and
by definition Lconsume(β)Mα has maximal configuration done+

α;β = done+
α′

so is equal to LskipMα′ .

Performing memory actions yields:

Lemma 9.9. If 〈M, s1, α〉 → 〈M ′, s′1, α
′〉 with dom(s1) = dom(s′1) then there

exists q ∈ LMM that is fully compatible with qs1Bs′1 and such that LMMα/(q~
qs1Bs′1

) = LM ′Mα′.

Proof. The previous lemma induces that this is true on every cases where
s1 = s′1, and we need to check the cases of !`R and `W :=tt (hence α = α′).

That q exists is obvious by definition of deref and assign. Equality on the
R-augmentations is direct too, relying, in the case where the memory action
is not the first one to be performed on `, on the fact that every annotation
β in s1 is less than α and so that the resulting annotation α ‖ β is actually
equal to α, since α = α ‖ 0 ≤R α ‖ β ≤R α ‖ α = α.

Finally, reduction may uncover new memory locations. Those have to be
hidden in order to preserve the equality between the interpretation of a term
and the one of its reduct:

Lemma 9.10. If 〈M, s1, α〉 → 〈M ′, s′1 ] s2, α
′〉 with dom(s1) = dom(s′1)

then there exists q ∈ LMM that is fully compatible with qs1Bs′1 and such that
LMMα/(q~ qs1Bs′1) = LM ′Mα′ � cells2.

Proof. Again the lemma 9.9 induces that this is true on every case where
s2 is empty. The remaining case is M = new x, y inM0. In that case α =
α′, s1 = s′1, s2 = [` 7→ ε], and M ′ = M0[`W/x, `R/y], so, by substitution
lemma (9.6), LM0Mα = LM ′Mα and, by compatibility of residuation with �
(proposition 9.2): LMMα = (JMK� cell`)/(q−A,α) = LM ′Mα � cells2 .

9.1.3 Many steps
We now move on to proving lemma 9.4 for the many-steps rules. From the
previous section we show otm; rfl is trivial. So far, we actually have equali-
ties between the left and right hand-side. First we show that this is preserved
if the reduction being considered purely sequential, meaning that its deriva-
tion tree does not contain any instance of the par rule (the contextual rule
for parallel evaluation contexts are also excluded as they are particular cases
of the par rule). This puts an emphasize on the fact that the operational
semantics yields sub-optimal computation in comparison with the game se-
mantics, only when it has to deal with parallel reductions.
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Lemma 9.11. If 〈M, s1, α〉⇒ 〈M ′, s′1]s2, α
′〉 is a purely sequential reduction

with dom(s1) = dom(s′1) then there exists q ∈ LMM that is fully compatible
with qs1Bs′1 and such that

LMMα/(q~ qs1Bs′1) = LM ′Mα′ � cells2

Proof. By well-founded induction on the reduction tree, let us first study the
contextual rules (without parallel contexts).

Consider 〈M ;N, s1, α〉 ⇒ 〈M ′;N, s′1 ] s2, α
′〉 such that 〈M, s1, α〉 ⇒

〈M ′, s′1 ] s2, α
′〉. First note that by compatibility of residuations we have

(i)

LM ;NMα = (seq� (JMK⊗ JNK))/(run−α _ run+
α � run−α )

= seq/(run−α _ run+
α )� (JMK⊗ JNK)/run−α

= seq/(run−α _ run+
α )� (LMMα ⊗ JNK)

and – also using the laws of ⊗ and � – (ii)

LM ′;NMα′ � cells2 = (seq/(run−α′ _ run+′
α)� (LMMα′ ⊗ JNK))� cells2

= seq/(run−′α _ run+
α′)� ((LMMα′ ⊗ JNK)� cells2)

= seq/(run−α′ _ run+
α′)� ((LMMα′ � cells2)⊗ JNK)

since M and N do not share variables.
Then, by induction there exists q ∈ LMMα fully compatible with qs1Bs′1

such that LMMα/(q~qs1Bs′1) = LM ′Mα′�cells2 . By composition, q = (run+
α �

run−x _ q) so q is also in LM ;NMα. Then, using (i) and the compatibility
properties of residuation, we have

LM ;NMα/(q~ qs1Bs′1) = seq/(run−α _ run+
α )� (LMMα/(q~ qs1Bs′1)⊗ JNK)

by induction, the right component is equal to LM ′Mα′ � cells2 ⊗ JNK, and by
definition the left component is also equal to seq/(run−α′ _ run+

α′) so we can
finally apply (ii) to reach the desired equality.

The contextual rules with other evaluation contexts E [ ] = [ ]N |
if [ ] M N | [ ] := tt | ![ ] can be treated similarly.

Thus, let us focus on the trs rule, having:

〈M, s1, α〉⇒ 〈M ′, s′1 ] s2, α
′〉⇒ 〈M ′′, s′′1 ] s′2 ] s3, α

′′〉

By induction hypothesis on the second reduction, there exists q ∈ LM ′Mα′
fully compatible with qs′1]s2Bs

′′
1]s
′
2
∈ cells′1]s2 . This last augmentation can

actually be split into qs′1Bs′′1 ⊗ qs2Bs′2 by definition of cells′1]s2 = cells′1 ⊗ cells2 .
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So, in particular, q is causally compatible with qs2Bs′2 and their composition
q� qs2Bs′2 ∈ LM ′Mα′ � cells2 is fully compatible with qs′1Bs′′1 .

By induction hypothesis on the first reduction, there is q′ ∈ LMMα fully
compatible with qs1Bs′1 such that LMMα/(q′ ~ qs1Bs′1) = LM ′Mα′ � cells2 hence
q � qs2Bs′2

∈ LMMα/(q′ ~ qs1Bs′1
) and so, there exists q′′ ∈ LMMα such that

q
′ ↪→ q

′′, and q′′/(q′~qs1Bs′1) = q�qs2Bs′2 . Moreover, since qs1Bs′′1/qs1Bs′1 =
qs′1Bs

′′
1
, we have q

′′ is fully compatible with qs1Bs′′1
. Now, using splits of

residuations and their compatibility with � we have:
LMMα/(q′′ ~ qs1Bs′′1 ) = (LMMα/(q′ ~ qs1Bs′1))/((q� qs2Bs′2)~ qs′1Bs′′1 )

= (LM ′Mα′ � cells2)/(q� qs2Bs′2 , λq~qs′1]s2Bs′′1]s′2 ∪ ρs2Bs
′
2
)

= (LM ′Mα′/(q~ qs′1Bs′′1 ))� (cells2/qs2Bs′2)
By definition, the right hand-side of the resulting composition is equal
to cells′2 . On the left hand-side, the induction properties on q also give
LM ′Mα′/(q~qs′1]s2Bs′′1]s′2) = LM ′′Mα′′�cells3 . Putting everything together this
yields

LMMα/(q′′ ~ qs1Bs′′1 ) = LM ′′Mα′′ � cells3 � cells′2
as desired.

All operations used in the proof above (i.e. tensor, composition and
residuation) preserve the pre-order ≤R on R-strategies so it is of no harm
to remove the hypothesis of pure sequentiality on the many-step reduction
〈M, s1, α〉 ⇒ 〈M ′, s′1 ] s2, α

′〉 and to change the induction hypothesis from
equality to ≤R in order to treat the cases of the ctx and trs rules in the
inductive proof of lemma 9.4.

Similarly, all the single-step reductions are treated by the lemmas from
subsection 9.1.2 as they are particular cases of the general lemma 9.4.

Thus, to finish to prove lemma 9.4, we are left with the inductive case for
the par many-step rules, which we treat now:

End of the proof of lemma 9.4. Consider
〈M, s1, α〉⇒ 〈M ′, s′1 ] s2, α

′〉 〈N, s1, α〉⇒ 〈N ′, s′′1 ] s3, α
′′〉

〈M ‖ N, s1, α〉⇒ 〈M ′ ‖ N ′, (s′1 ↑ s′′1) ] s2 ] s3, α
′ ‖ α′′〉

par

Similarly to other contextual rules in the proof of lemma 9.11, we first note
that (i):

LM ‖ NMα = (par � (JMK⊗ JNK)) / (run−α _ (run+
α ‖ run+

α ) � run−α ‖ run−α )
= (par/(run−α _ (run+

α ‖ run+
α )))� ((JMK⊗ JNK)/run−α ‖ run−α )

= (par/(run−α _ (run+
α ‖ run+

α )))� (LMMα ⊗ LNMα)

and that – writting (α′ ‖ α′′) for the residuation factor (run−α′‖α′′ _
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(run+
α′‖α′′ ‖ run+

α′‖α′′)) on par – (ii):

LM ′ ‖ N ′Mα′‖α′′ � cells2]s3
= par/(α′ ‖ α′′)�

(
LMMα′‖α′′ ⊗ LNMα′‖α′′

)
� (cells2 ⊗ cells3)

= par/(α′ ‖ α′′)�
((

LMMα′‖α′′ � cells2
)
⊗
(
LNMα′‖α′′ � cells3

))
≥R par/(α ‖ α)� ((LMMα′ � cells2)⊗ (LNMα′′ � cells3))

Then, by induction hypothesis there exists q ∈ LMMα and q′ ∈ LNMα fully
compatible with respectively qs1Bs′1

and qs1Bs′′1
. So q ⊗ q

′ is in LM ‖ NMα
and is fully compatible with qs1Bs′1↑s′′1 by lemma 9.5. Moreover, following (i),

LM ‖ NMα/(q⊗ q′ ~ qs1Bs′1↑s′′1 )
= (par/(α ‖ α) � (LMMα ⊗ LNMα)) /(q⊗ q′ ~ qs1Bs′1↑s′′1 )
= par/(α ‖ α) �

(
(LMMα ⊗ LNMα) /(q⊗ q′ ~ qs1Bs′1 ⊗ qs1Bs′′1 )

)
= par/(α ‖ α) �

(
LMMα/(q~ qs1Bs′1)⊗ LNMα/(q′ ~ qs1Bs′′1 )

)
Which is ≤R to (LM ′ ‖ N ′Mα′‖α′′ � cells2]s3) by induction hypothesis and
following following (ii).

9.2 Adequacy for R+-IPA
In the previous section, we showed that if M ⇓α then its corresponding
strategy is non empty and moreover, there exists α′ ≤ α such that doneα

′ ∈
LMM0. While from [CC16] we know that the converse is also true for the
first part (i.e. a non empty denotation implies a (may) converging term),
the second part does not hold in our model; in general our model is not
adequate.

Non-Adequacy. To see why, consider:

` new x,

 wait(1); wait(2);
xW :=tt; !xR;
wait(2) wait(1)

 : bool in

Our model predicts that this may evaluate to tt in 3 seconds (see Fig-
ure 8.9) and to ff in 4 seconds. However, the operational semantics can only
evaluate it (both to tt and ff) in 4 seconds. Intuitively, the reason is that
the causal shapes implicit in the reduction ⇒ are all series-parallel (gener-
ated with sequential and parallel composition), whereas the interaction in
Figure 8.9 is not.



9.2 Adequacy for R+-IPA 231

Our causal semantic approach yields a finer resource analysis than the one
achieved by the parallel operational semantics. The operational semantics,
rather than our model, is to blame for non-adequacy: indeed, we now show
that for R = R+ our model is adequate with respect to an operational
semantics specialized for time.

R+-IPA To improve the performance of R+-IPA (i.e. R-IPA on time), we
extend its operational semantics with the following rule:

〈wait(t1 + t2), s, t0〉 → 〈wait(t2), s, t0 + t1〉 (split)

Also considering that wait(0) = skip, this rule allows for a parsimonious
usage of resources: the scheduler might choose to stop a idling process and
restart it later to improve the overall execution time. For example, the
program above can now evaluate to tt in 3 seconds.

Obviously, Lwait(t1 + t2)Mt0 = Lwait(t2)Mt0+t1 , so soundness still holds for
the finer operational semantics. Moreover, the new semantics is conservative
with respect to the previous one and thus it can still yields sub-optimal
results, so the statement of soundness remains as an inequality. Yet, we
now show that for a valid configuration 〈M, s, t〉 with Ω(s) ` M : X, every
augmentation q ∈ LMMt~ cells that returns at time tf (meaning that it has a
top event r+

tf , its result, such that r+ ∈ LXM – i.e. r+
tf is equal to either done+

tf
,

ok+
tf
, tt+

tf
or ff+

tf
), one can derive an optimal reduction leading 〈M, s, t0〉 to

its corresponding value (skip, `, tt, ff) at time tf . This will prove adequacy.

Optimal reduction Intuitively, in the interpretation of a valid configura-
tion 〈M, s, t0〉 with Ω(s) `M : X, an augmentation qM ~ qs ∈ LMMt0 ~ cells
that results in time tf describes an interaction between LMMt0 and the mem-
ory that yields a successful evaluation to its result at time tf . To prove
adequacy, we show that this evaluation can be reproduced at the level of
terms by extracting a derivation from 〈M, s, t0〉 to its value at time tf . This
derivation will follow a simple pattern:

- performing every non-wait operation as soon as it is available in M
(i.e. in head position) but only if it has been acknowledged/answered
by the memory (the memory has its own schedule – described in qs –
and it may force to delay an available reduction);

- or waiting optimally until the first case is met, i.e. by reducing simul-
taneously all waits in head-position.
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〈 wait(2); wait(1);
`W :=tt test (!`R)

` 7→ ε, 0

〉
⇒

〈 wait(1); wait(0);
`W :=tt test (!`R)

` 7→ ε, 1

〉
⇒

〈 wait(0);
`W :=tt test (!`R)

` 7→ ε, 2

〉

wtt2_���
� ''.

r1_���
ok2

� !!)
tt25vv�

done+
2

≤R
wtt2

� ''.
_���

r1_���
ok2

� !!)
tt25vv�

done+
2

≤R
wtt2

� ''.
_���

r2_���
ok2

� !!)
tt25vv�

done+
2

Figure 9.1: Spending time adequately (where testM = if M skip⊥)

A representative example of the optimal reduction described above is de-
picted in figure 9.1 with the augmentation displayed below its configuration.
The first step simply spends 1 second in parallel in the two threads, as none of
them has an available non-wait operation. The second step does also spend
time although !`R is available in M ; this is because the corresponding read
has not yet been answered by the memory – witnessed by the fact that in the
augmentation, tt is causally dependent from wtt whose corresponding write
operation is not yet available in M . After this second, this write is made
available in M so the third and fourth steps – not depicted in figure 9.1 –
will thus simply be the sequential execution of the write and read operations.

Canonical form Apart from its top results ff+, tt+, ok+ or done+, the
arena associated with Ω(s) ` X only allows to record memory operations in
the denotation of a term, so we first discard cases whereM has a non-waiting
operation that is not a memory operation:

Definition 9.3. We say that a term M is in canonical form if it cannot
be decomposed as E [(λx.M) N ], E [skip; N ], E [skip ‖ N ], E [N ‖ skip],
E [if ttN1N2], E [if ff N1N2], or E [new x, y inN ] for E [−] an evaluation con-
text.

Let q ∈ LMMt0 ~ cells, we say that it has a minimal operation with timing
t if it is a result with time t or if it has a prefix p ↪→ q of the form p =
(wtt`,t _ ok`,t) or p = (r`,t _ b`,t) for ` ∈ dom(s) and b ∈ {tt, ff}. On
figure 9.1, there is only one minimal operation (wtt2 _ ok2) and it has
timing 2.

We now relate minimal operations in q with available operations or values
inM , whenM is a ground term in canonical form. We show that if t = t0, the
corresponding operation can be performed immediately. Whereas if t > t0
then we need to spend time to trigger it; it is then critical to spend time on
all the available waits in parallel:
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Lemma 9.12. Let Ω(s) ` M : X in canonical form and t0 ∈ R+ describe a
valid configuration, then for q ∈ LMMt0 ~ cells returning at time tf we have –
mutual exclusion:

1. either q has a minimal operation with timing t0 and the corresponding
value/operation is available in M (i.e. M = skip, ff , tt, `, E [!`] or
E [l :=tt]);

2. or all minimal operations have timing strictly greater than t0, and
M can wait optimally, meaning that for αmin = min{α | M =
E [wait(α)]}, the minimal delay that can be found in an available wait
command in M , and every β ≤ αmin we have

〈M, s, t0〉⇒ 〈M ′, s, t0 + β〉

with M ′ only differing from M by having replaced the available wait(α)
commands in M with wait(α − αmin) commands. Furthermore q ∈
LM ′Mt0+β ~ cells.

Proof. By induction on the structure of terms in canonical form:
If M is from an axiom of figure 8.1, it can either be a value (skip, tt, ff ,

or ` ∈ dom(s)), verifying 1; or it can be wait(β), verifying 2.
If M = if M ′ N1 N2, then M ′ must be in canonical form and different

from tt or ff . M also has the same available wait commands as M ′ so they
share the same αmin.

Let s = s1 ] s2 such that Ω(s1) ` M ′ : bool and Ω(s2) ` N1, N2 : X,
then by definition of the interpretation of if , if q ∈ LMMt0 ~ cells with result
in time tf , then there exists q′ ∈ LM ′Mt0 ~ cells1 resulting in time tf ′ such
that (q′ − {b+

tf ′
}) ↪→ q and, if b = tt (respectively b = ff) there exists qi ∈

LNiMtf ′~ cells2 (for i = 1 or 2 respectively) such that q is the concatenation of
(q′−{b+

tf ′
}) with qi, that is the augmentation resulting in glueing (q′−{b+

tf ′
})

and qi together by adding immediate causal links from the maximal events
of (q′ − {b+

tf ′
}) to the minimal event of qi. In particular, this means that q

has the same minimal operations as q′.
One can thus apply the induction hypothesis on M ′ to deduce that if q

has a minimal operation with timing t0 then so does q′, hence M ′ validates
1 and so M validates 1 as well.

On the other hand, if all minimal operations in q have timing greater than
t0 then so does the minimal operations in q′ and so by induction hypothesis
again M ′ validates 2, leading to M validating 2 as well: for every β ≤ αmin,
〈M ′, s1, t0〉⇒ 〈M ′′, s1, t0 + β〉 yields 〈M, s, t0〉⇒ 〈if M ′′ N1 N2, s, t0 + β〉 by
applying the contextual rule of⇒ (changing s1 to s transparently); moreover,
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the term ifM ′′ N1 N2 has the same available wait commands as M ′′ so by
induction hypothesis it validates the condition of 2 and, similarly to the above
deconstruction of the augmentations in LMMt0~cells, one can deconstruct the
augmentations in Lif M ′′ N1 N2Mt0+β~cells and see that q′ ∈ LM ′′Mt0+β~cells1
yields q ∈ Lif M ′′ N1 N2Mt0+β ~ cells.

The same reasoning holds for M = M ′;N | M ′ :=wtt | !M ′. The case of
M = M1 ‖M2 is also similar to the above if case, except that when q has all
its minimal events with timing greater than t0 then αmin = min(αmin 1, αmin 2)
and one has to reduce both M1 and M2 in parallel with time increased by
the same β ≤ αmin.

Finally, one can note that new x, y inM ′ is not a canonical form and,
similarly, a simple induction on typing trees shows that M ′ N cannot be in
canonical form either (a term M ′ of type A( B can only be obtained from
an abstraction or from the application of an abstraction). This concludes
our induction.

Adequacy Alternating between optimal waiting phases and optimally
scheduled non-wait operations, we can finally prove adequacy.

Theorem 9.2. Let Ω(s) ` M : com, t0 ∈ R+ describing a valid configu-
ration, if q ∈ LMMt0 ~ cells with maximal event done+

tf
. Then, there is a

derivation
〈M, s, t0〉⇒ 〈skip,−, tf〉

In particular, if `M : com and done+
tf
∈ LMM0, then M ⇓tf .

Proof. By induction on the size of M . First, if M is not in canonical form, it
has the form of one of the evaluation contexts from definition 9.3 so we can
perform the corresponding one-step reduction: 〈M, s, t0〉 → 〈M ′, s ] s′, t0〉
with s′(`) = ε for every ` ∈ dom(s′). Moreover, by soundness, LMMt0~cells =
(LM ′Mt0 � cells′)~ cells and so q is of the form (qLM ′M� qs′)~ qs. This yields
(qLM ′M ~ qs′) ~ qs ∈ LM ′Mt0 ~ cells]s′ with maximal event done+

tf
and M ′

smaller than M so by induction hypothesis: 〈M, s, t0〉 ⇒ 〈M ′, s ] s′, t0〉 ⇒
〈skip,−, tf〉

Now, if M is in canonical form and q ∈ LMMt0 has all its minimal opera-
tions with timing strictly greater than t0, then applying lemma 9.12 we can
conclude by induction hypothesis.

Otherwise, at least one minimal operation has timing t0. If it is a result,
then we are done as this implies M = skip. If it is a memory operation,
assume that it is (wttt0 _ okt0) and write s′ = s[` 7→ s(`).W t0 ]. Then by
lemma 9.12 again, it follows that M = E [`W :=tt] and q/((wttt0 _ okt0)) ∈
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LE [skip]Mt0 ~ cells′ . So applying the induction hypothesis we get

〈M, s, t0〉⇒ 〈E [skip], s′, t0〉⇒ 〈skip,−, tf〉

The cases of (rt0 _ ttt0), (rt0 _ ff t0) are similar; concluding the induction.

9.3 Improvement for R+-IPA
In the context of programs manipulations like compilation or optimization,
formal semantics are used to prove that a program and its updated version
behave the same. Usually, for qualitative aspect one is interested in contextual
equivalence that ensures that two open terms behave similarly whatever their
execution environment. More precisely, a context for a type Γ ` A is defined
as “a closed term with a hole” that is C[−] of the form

C[−] ::= [−] | C[−]N |M C[−] | C[−]; N |M ; C[−]
| C[−] := tt | !C[−] | (C[−] ‖ N) | (M ‖ C[−])
| if C[−]N1N2 | if M C[−]N2 | if M N1C[−]

such that for every term Γ ` M : A, ` C[M ] : com; and two terms Γ `
M,M ′ : A are said to be contextually equivalent, written M ∼= M ′, if for
every context C[−], C[M ] ⇓ iff C[N ] ⇓ – for ⇓ a given notion of convergence
e.g. may in IPA.

In the case of quantitative operational semantics like R+-IPA however,
one may rather be interested in a notion of improvement between pro-
grams [San91]:

Definition 9.4 (Improvement). Let Γ `M,N : A be two terms of R+-IPA,
we say that M may be improved by N , written M & N , if for every context
C[−], C[M ] ⇓α implies C[N ] ⇓α′ for α′ ≤R α.

In the above M and N may not be contextually equivalent: N may
terminate more often and with better time than M . It is also common to
strengthen the definition of improvement and ask:

Definition 9.5 (Strong improvement). Let Γ ` M,N : A be two terms of
R+-IPA, we say thatM is strongly improved by N , writtenMDN , ifM & N
and M ∼= N .

Based on the soundness and adequacy results for R+-IPA, we show in this
section how the operational semantic of improvement reflect in our model.
This is widely inspired by the semantic of improvement in [Ghi05].
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9.3.1 Semantics of Improvement
Let ∞ be greater than any real number, given a closed term ` C : com, we
set

tmin(C) = min
(
{∞} ∪

{
t ∈ R+ | C ⇓t

})
this corresponds to the minimal time of convergence of C or infinity if
C diverges. The condition for improvement can then be rewritten as
tmin(C[M ]) ≥ tmin(C[N ]).

Based on soundness and adequacy, we have the following equivalence
between R+-IPA terms and their denotations:

Corollary 9.1. Let `M : com be a command of R+-IPA, then

tmin(M) = tmin(JMK)

for tmin(σ : com) = min
(
{∞} ∪

{
t ∈ R+ | donet ∈ σ/(run−0 )

})
.

Following [Ghi05], the relations of improvement on terms then have a
semantic counterpart:

Definition 9.6 (Semantics of improvement). Let σ, τ : A be two R-
strategies, we say that σ improves τ , written τ & σ, if for every R-strategy
ρ : A + // com, tmin(ρ� τ) ≥ tmin(ρ� σ).

If furthermore σ = τ as plain rigid strategies then σ is said to strongly
improve τ , written τ D σ.

Proposition 9.3 (Soundness of improvement). Let Γ `M,N : A, then

JMK & JNK =⇒ M & N

JMKD JNK =⇒ M DN

Proof. Let C[−] be a context for M and N , then C[−] defines a R+-
strategy JCK : Γ⊥ ‖ A + // com such that JC[M ]K = JCK � JMK and
JC[N ]K = JCK � JNK so by hypothesis and corollary 9.1 tmin(C[M ]) =
tmin(JC[M ]K) ≥ tmin(JC[N ]K) = tmin(C[N ]).

Moreover, if JMK = JNK as plain strategies then JC[M ]K = JC[N ]K as
plain strategies as well so, by definition, tmin(JC[M ]K) =∞ iff tmin(JC[N ]K) =
∞, and so, by corollary 9.1 again, C[M ] converges iff C[N ] converges.

The above relation allows to reason on denotations instead of terms in
order to show improvements, yet, as they stand the relations of semanti-
cal improvement are not much handier to work with than their operational
counterpart. However, they have a direct connection with the – more locally
defined – pre-orders on R+-strategies presented in section 8.2.3:
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Proposition 9.4. Let σ, τ : A be two R+-strategies, then

τ �R σ =⇒ τ & σ

τ ≥R σ =⇒ τ D σ

Proof. These are direct consequences of the fact that �R and ≤R are both
preserved by composition. Hence for every R+-strategy ρ : A + // com, ρ �
τ �R ρ� σ implying tmin(ρ� τ) ≥ tmin(ρ� σ), together with σ = τ as plain
strategies in the second case.

Contrary to [Ghi05], there is no hope for proving a full abstraction result
on strong improvement; as shown in [CC16], the original interpretation of
IPA in the concurrent model of rigid strategies in not fully abstract. The
question of whether full abstraction could be shown for mere improvement
is left open. However, as it stands, the relation �R+ on R+-strategies would
not be the right one for full abstraction as it is is not equivalent to & on
R+-strategies.

Example 9.1. Consider the following two R+-strategies:

σ : com τ : com com
run−x

_���
done+

x

D r−x
_���

done+
x2

r−x
_���

done+
1
2 (x+1)

They have the same underlying plain rigid strategy, so for every strategy
ρ : com0 + // com1, tmin(ρ� σ) =∞ iff tmin(ρ� τ) =∞. Now, write qσ and
qτ for the maximal R+-augmentations in σ and τ and suppose tmin(ρ� σ) =
t ∈ R+. This amounts to saying that ρ has a maximal augmentation q with
top event done+ such that (q � qσ)/(run−0 ) = done+

t . If λq(done+) is a
constant function or only depends on the initial move run−1 then obviously
(q � qτ )/(run−0 ) = done+

t and so tmin(ρ � σ) ≥ tmin(ρ � τ). Otherwise,
λq(done+) = f(run−1 ,done+

0 ) and, as f is non-decreasing, for every value x
that q may chose on run−0 , either f(0, x) ≥ f(0, x2) (if x ≤ 1), or f(0, x) ≥
f(0, 1

2(x+ 1)) (if x ≥ 1). Hence in all cases tmin(ρ� σ) ≥ tmin(ρ� τ) and so
σ is strongly improved by τ .

On the other hand, it is not true that σ �R+ τ , as x 7→ x is incomparable
with x 7→ x2 and x 7→ 1

2(x+ 1) on R+. So neither of the two implications in
proposition 9.4 are equivalences.
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9.3.2 Examples of improvement
Despite being non-adequate, the relations ≤R and �R can still be used to
show some “laws of improvement” on R+-IPA programs, in the style of the
laws of improvement presented in [Ghi05]. For example, the following parallel
optimisation is a strong improvement:

new y in
M ; (wait(1);xW :=tt); if (wait(1); !yR) N1 N2

(opt1)

D new y in
M ; if (wait(1);xW :=tt) ‖ (wait(1); !yR)) N1 N2

It means that in a context where performing memory operations takes 1
millisecond, then doing two independent memory operations in parallel is an
improvement compare to executing them sequentially.

Lemma 9.13. Let P1 and P2 be respectively the top and bottom terms in opt1,
then P1 D P2.

Proof. First let us compute the denotation of the open term P ′1 =
wait(1); xW := tt; if (wait(1); !yR), it yields a strategy with maximal
augmentations:

(com ×com)⊗memW⊗memR + // com
run−x

%oouwtt+
x+1_���

ok−y
� $$,r+

y+1_���
tt−z

#nntrun+
z_���

done−u
� **1done+

u

(com× com) ⊗memW⊗memR + // com
run−x

%oouwtt+
x+1_���

ok−y
� $$,r+

y+1_���
ff−z

%oourun+
z_���

done−u
� **0done+

u

Similarly, for P ′2 = if (wait(1); xW :=tt) ‖ (wait(1); !yR) we get:

(com ×com)⊗memW⊗memR + // bool
q−x,rrz&oovwtt+

x+1_���
r+
y+1_���

ok−y
'ppw

tt−z
$nnurun+

y‖z_���
done−u

� **1done+
u

(com× com) ⊗memW⊗memR + // bool
q−x,rrz&oovwtt+

x+1_���
r+
y+1_���

ok−y-ssz
ff−z

&oovrun+
z_���

done−u
� **0done+

u
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Now, the whole interpretation of P1 and P2 is given by – for i = 1, 2:

(seq� (JMK⊗ (JP ′i K� 〈JN1K, JN2K〉)))� cell

and, by definition of seq, cell and associativity of composition, ifM is writing
on x, then this is equal to

seq� ((JMK� (wtt−x _ ok+
x ))⊗ ((JPiK� (r−x _ tt+

t‖x))� 〈JN1K, JN2K〉))

for some t ∈ R+, in which case we have

JP ′1K� (r−x _ tt+
t‖x) ≥R+ JP ′2K� (r−x _ tt+

t‖x)

and so by preservation of ≥R+ , JP1K ≥R+ JP2K, yielding P1 D P2 by proposi-
tions 9.4 and 9.3. On the other hand, if M is not writing into the memory,
then the denotations of P1 and P2 are equal to

seq� (JMK⊗ ((JP ′i K� (r−x _ ff+
x ))� (〈JN1K, JN2K〉 � (wtt−x _ ok+

t‖x))))

in that case we still have

JP ′1K� (r−x _ ff+
x ) ≥R+ JP ′2K� (r−x _ ff+

x )

concluding on the strong improvement of opt1.

Following the same reasoning we show that if instead yR is bound with
xW then opt1 is still a may improvement:

Lemma 9.14. The following shuffling is a may improvement:

new y in
M ; (wait(1); yW :=tt); if (wait(1); !yR) N1 N2

(opt2)

& new y in
M ; if (wait(1); yW :=tt) ‖ (wait(1); !yR)) N1 N2

Proof. Let again write P1 and P2 for the top and bottom programs being
compared. Then contrary to the above, their denotations are now equal to

seq� (JMK⊗ ((JP ′i K� cell)� 〈JN1K, JN2K〉))
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It is not the case that JP ′1K�cell ≥R+ JP ′2K�cell yet we still have JP ′1K�cell �R+

JP ′2K� cell:

(com ×com) + // com

run−x
&oovrun+

x+2_���
�R+

done−u
� ((/done+

u

(com × com) + // bool
q−x

%oourun+
x+1_���

done−u
� ((/done+

u

q−x,rrz
run+

x+1_���
done−u

� $$,
done+

u

So, by preservation of �R+ , JP1K �R+ JP2K, yielding P1 & P2 by proposi-
tion 9.4 and corollary 9.3.

9.3.3 Further improvements. . .
On R+-IPA, it would be interesting to compare our model with structures
used in timing analysis. For instance [MB12] relies on a concurrent general-
ization of control flow graphs that is reminiscent of event structures.

In an other line of work, it would also be worthy to adapt techniques
known on plain concurrent games model such as symmetries [CCW15,
CCW19] or essential events [CCHW18] to our annotated model. In the first
case, this would allows us to deal with replication and languages with a
fixpoint operator. In the second case, this would provide a setting to in-
terpret must convergence, a desirable complement to the may convergence
treated here, as it would give a semantics for exact improvements of non-
deterministic programs. As suggested by recent experience with concurrent
games [CCPW18, CdVW19], we expect these techniques to adapt transpar-
ently to annotations.

A more intricate question that is left open is whether our model could
adapt to non-idempotent parallel usage of resources, such as power or band-
width. Although we could predict their maximal usage for non-interfering
programs (i.e. programs in which every memory cell is used in a sequential
way only), it is not clear how to exploit information from possible interfer-
ences. Essential events might again be of help for such question.

Finally, a broader perspective for future work is to investigate whether
our annotated construction could be used for other purposes than resources
analysis, as e.g. for symbolic execution or abstract interpretation. This would
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require annotations to affect somehow the execution flow of strategies, for
which the more general concurrent games model with annotations sketched
in section 3.3 might help.
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