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Abstract. We present a framework for game semantics based on con-
current games, that keeps track of resources as data modified throughout
execution but not affecting its control flow. Our leading example is time,
yet the construction is in fact parametrized by a resource bimonoid R,
an algebraic structure expressing resources and the effect of their con-
sumption either sequentially or in parallel. Relying on our construction,
we give a sound resource-sensitive denotation to R-IPA, an affine higher-
order concurrent programming language with shared state and a primi-
tive for resource consumption in R. Compared with general operational
semantics parametrized by R, our resource analysis turns out to be finer,
leading to non-adequacy. Yet, our model is not degenerate as adequacy
holds for an operational semantics specialized to time.
In regard to earlier semantic frameworks for tracking resources, the main
novelty of our work is that it is based on a non-interleaving semantics,
and as such accounts for parallel use of ressources accurately.

1 Introduction

Since its inception, denotational semantics has grown into a very wide subject.
Its developments now cover numerous programming languages or paradigms,
using approaches that range from the extensionality of domain semantics [24]
(recording the input-output behaviour) to the intensionality of game seman-
tics [1,17] (recording execution traces, formalized as plays in a 2-players game
between the program (“Player”) and its execution environment (“Opponent”)).
Denotational semantics has had significant influence on the theory of program-
ming languages, with contributions ranging from program logics or reasoning
principles to new language constructs and verification algorithms.

Most denotational models are qualitative in nature, meaning that they ignore
efficiency of programs in terms of time, or other resources such as power or
bandwith. To our knowledge, the first denotational model to cover time was
Ghica’s slot games [13], an extension of Ghica and Murawski’s fully abstract
model for a higher-order language with concurrency and shared state [14]. Slot
games exploit the intensionality of game semantics and represent time via special
moves called tokens matching the ticks of a clock. They are fully abstract w.r.t.
the notion of observation in Sands’ operational theory of improvement [26].
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More recently, there has been a growing interest in capturing quantitative
aspects denotationally. Laird et al constructed [18] an enrichment of the rela-
tional model of Linear Logic [11], using weights from a resource semiring given
as parameter. This way, they capture in a single framework several notions of
resources for extensions of PCF, ranging from time to probabilistic weights. Two
type systems with similar parametrizations were introduced simultaneously by,
on the one hand, Ghica and Smith [15] and, on the other hand, Brunel, Gaboardi
et al [4]; the latter with a quantitative realizability denotational model.

In this paper, we give a resource-sensitive denotational model for R-IPA,
an affine higher-order programming language with concurrency, shared state,
and with a primitive for resource consumption. With respect to slot games our
model differs in that our resource analysis accounts for the fact that resource
consumption may combine differently in parallel and sequentially – simply put,
we mean to express that wait(1) ‖ wait(1) may terminate in 1 second, rather
than 2. We also take inspiration from weighted relational models [18] in that our
construction is parametrized by an algebraic structure representing resources and
their usage. Our resource bimonoids 〈R, 0, ; , ‖,≤〉 differ however significantly
from their resource semiring 〈R, 0, 1,+, ·〉: while ; matches ·, ‖ is a new operation
expressing the consumption of resources in parallel. We have no counterpart for
the +, which agglomerates distinct non-deterministically co-existing executions
leading to the same value: instead our model keeps them separate.

Capturing parallel resource usage is technically challenging, as it can only be
attempted relying on a representation of execution where parallelism is explicit.
Accordingly, our model belongs to the family of concurrent or asynchronous
game semantics pioneered by Abramsky and Melliès [2], pushed by Melliès [20]
and later with Mimram [22], and by Faggian and Piccolo [12]; actively developed
in the past 10 years prompted by the introduction of a more general framework
by Rideau and Winskel [25,7]. In particular, our model is a refinement of the
(qualitative) truly concurrent interpretation of affine IPA described in [5]. Our
methodology to record resource usage is inspired by game semantics for first-
order logic [19,3] where moves carry first-order terms from a signature – instead
here they carry explicit functions, i.e. terms up to a congruence (it is also remi-
niscent of Melliès’ construction of the free dialogue category over a category [21]).

As in [5] we chose to interpret an affine language: this lets us focus on the key
phenomena which are already at play, avoiding the technical hindrance caused by
replication. As suggested by recent experience with concurrent games [6,10], we
expect the developments presented here to extend transparently in the presence
of symmetry [8,9]; this would allow us to move to the general (non-affine) setting.

Outline. We start Section 2 by introducing the language R-IPA. We equip it
first with an interleaving semantics and sketch its interpretation in slot games.
We then present resource bimonoids, give a new parallel operational semantics,
and hint at our truly concurrent games model. In Section 3, we construct this
model and prove its soundness. Finally in Section 4, we show adequacy for an
operational semantics specialized to time, noting first that the general parallel
operational semantics is too coarse w.r.t. our model.
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2 From R-IPA to R-Strategies

2.1 Affine IPA

Terms and Types. We start by introducing the basic language under study, affine
Idealized Parallel Algol (IPA). It is an affine variant of the language studied
in [14], a call-by-name concurrent higher-order language with shared state. Its
types are given by the following grammar:

A,B ::= com | bool |memW |memR | A( B

Here, memW is the type of writeable references and memR is the type of
readable references; the distinction is necessary in this affine setting as it allows
to share accesses to a given state over subprocesses; this should make more
sense in the next paragraph with the typing rules. In the sequel, non-functional
types are called ground types (for which we use notation X). We define terms
directly along with their typing rules in Figure 1. Contexts are simply lists
x1 : A1, . . . , xn : An of variable declarations (in which each variable occurs at
most once), and the exchange rule is kept implicit. Weakening is not a rule but
is admissible. We comment on a few aspects of these rules.

Firstly, observe that the reference constructor new x, y inM binds two vari-
ables x and y, one with a write permission and the other with a read permission.
In this way, the permissions of a shared state can be distributed in different com-
ponents of e.g. an application or a parallel composition, causing interferences
despite the affine aspect of the language. Secondly, the assignment command,
M := tt, seems quite restrictive. Yet, the language is affine, so a variable can
only be written to once, and, as we choose to initialize it to ff , the only useful
thing to write is tt. Finally, many rules seem restrictive in that they apply only at
ground type X. More general rules can be defined as syntactic sugar; for instance
we give (all other constructs extend similarly): M ;A(B N = λxA. (M ;B (N x)).

Operational Semantics. We fix a countable set L of memory locations. Each lo-
cation ` comes with two associated variable names `W and `R distinct from other

ε
yy %%

Rα

��
Wα

��
RαW β WαRβ

Fig. 2: State diagram

variable names. Usually, stores are partial maps from L
to {tt, ff}. Instead, we find it more convenient to intro-
duce the notion of state of a memory location. A state
corresponds to a history of memory actions (reads or
writes) and follows the state diagram of Figure 2 (ignor-
ing for now the annotations with α, β). We write (M,≤M) for the induced set
of states and accessibility relation on it. For each m ∈ M, its set of available
actions is act(m) = {W,R} \ m (the letters not occurring in m, annotations
being ignored); and its value (in {tt, ff}) is val(m) = tt iff W occurs in m.

Finally, a store is a partial map s : L→ M with finite domain, mapping each
memory location to its current state. To each store corresponds a typing context

Ω(s) = {`X : memX | ` ∈ dom(s) & X ∈ act(s(`))}.
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Γ ` skip : com Γ ` tt : bool Γ ` ff : bool Γ ` ⊥ : X
(x : A) ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ ` λx.M : A( B

Γ `M : A( B ∆ ` N : A

Γ,∆ `M N : B

Γ `M : memR

Γ ` !M : bool

Γ `M : com ∆ ` N : X
Γ,∆ `M ; N : X

Γ `M : com ∆ ` N : X
Γ,∆ `M ‖ N : X

Γ `M : memW

Γ `M := tt : com

Γ `M : bool ∆ ` N1 : X ∆ ` N2 : X
Γ,∆ ` ifM N1N2 : X

Γ, x : memW , y : memR `M : X
Γ ` new x, y inM : X

Fig. 1: Typing rules for affine IPA

The operational semantics operates on configurations defined as pairs 〈M, s〉
with s a store and Γ ` M : A a term whose free variables are all memory
locations with Γ ⊆ Ω(s). This property will be preserved by our rather standard
small-step, call-by-name operational semantics. We refrain for now from giving
the details, they will appear in Section 2.2 in the presence of resources.

2.2 Interleaving Cost Semantics, and R-IPA

Ghica and Murawski [14] have constructed a fully abstract(for may-equivalence)
model for (non-affine) IPA, relying on an extension of Hyland-Ong games [17].

Their model takes an interleaving view of the execution of concurrent

x : com, y : bool ` bool
q−

run+

q+

tt−

done−

tt+

Fig. 3: A non-alternating play

programs: a program is represented by the set
of all its possible executions, as decided non-
deterministically by the scheduler. In game se-
mantics, this is captured by lifting the standard
requirement that the two players alternate. For
instance, Figure 3 shows a play in the interpre-
tation of the program x : com, y : bool ` x ‖ y :
bool. The diagram is read from top to bottom,

chronologically. Each line comprises one computational event (“move”), anno-
tated with “−” if due to the execution environment (“Opponent”) and with
“+” if due to the program (“Player”); each move corresponds to a certain type
component, under which it is placed. With the first move q−, the environment
initiates the computation. Player then plays run+, triggering the evaluation of
x. In standard game semantics, the control would then go back to the execution
environment – Player would be stuck until Opponent plays. Here instead, due
to parallelism Player can play a second move q+ immediately. At this point of
execution, x and y are both running in parallel. Only when they have both re-
turned (moves done− and tt−) is Player able to respond tt+, terminating the
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〈skip; M, s, α〉 → 〈M, s, α〉
〈skip ‖M, s, α〉 → 〈M, s, α〉
〈M ‖ skip, s, α〉 → 〈M, s, α〉
〈if ttN1N2, s, α〉 → 〈N1, s, α〉
〈if ff N1N2, s, α〉 → 〈N2, s, α〉

〈(λx.M)N, s, α〉 → 〈M [N/x], s, α〉
〈!`R, s, α〉 → 〈val(s(`)), s[` 7→ s(`).Rα], α〉

〈`W := tt, s, α〉 → 〈skip, s[` 7→ s(`).Wα], α〉
〈new x, y inM, s, α〉 → 〈M [`W /x, `R/y], s ] {` 7→ ε}, α〉
〈consume(β), s, α〉 → 〈skip, s, α;β〉

Fig. 5: Operational semantics: basic rules

computation. The full interpretation of x : com, y : bool ` x ‖ y : bool, its
strategy, comprises numerous plays like that, one for each interleaving.

As often in denotational semantics, Ghica and Murawski’s model is invari-
ant under reduction: if 〈M, s〉 → 〈M ′, s′〉, both have the same denotation. The
model adequately describes the result of computation, but not its cost in terms,
for instance, of time. Of course this cost is not yet specified: one must, for in-
stance, define a cost model assigning a cost to all basic operations (e.g. memory
operations, function calls, etc). In this paper we instead enrich the language
with a primitive for resource consumption – cost models can then be captured
by inserting this primitive concomitantly with the costly operations (see for ex-
ample [18]).

(α ∈ R)

Γ ` consume(α) : com

Fig. 4: Typing consume

R-IPA. Consider a set R of resources. The lan-
guage R-IPA is obtained by adding to affine IPA a
new construction, consume(α), typed as in Figure 4.
When evaluated, consume(α) triggers the consump-
tion of resource R. Time consumption will be a running example throughout the
paper. In that case, we will consider the non-negative reals R+ as set R, and for
t ∈ R+ we will use wait(t) as a synonym for consume(t).

To equipR-IPA with an operational semantics we need operations onR, they
are introduced throughout this section. First we have 0 ∈ R, the null resource ; if
α, β ∈ R, we have some α; β ∈ R, the resource taken by consuming α, then β –
for R = R+, this is simply addition. To evaluate R-IPA, the configurations are
now triples 〈M, s, α〉 with α ∈ R tracking resources already spent. With that,
we give in Figure 5 the basic operational rules. The only rule affecting current
resources is that for consume(β), the others leave it unchanged. However note
that we store the current state of resources when performing memory operations,
explaining the annotations in Figure 2. These annotations do not impact the
operational behaviour, but will be helpful in relating with the game semantics in
Section 3. As usual, these rules apply within call-by-name evaluation contexts –
we omit the details here but they will appear for our final operational semantics.

Slot Games. In [13], Ghica extends Ghica and Murawski’s model to slot games
in order to capture resource consumption. Slot games introduce a new action
called a token, representing an atomic resource consumption, and written $ –
writing n for n successive occurrences of $ . A model of N+-IPA using slot
games would have for instance the play in Figure 6 in the interpretation of

H = (wait(1); x; wait(2)) ‖ (wait(2); y; wait(1))
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in context x : com, y : bool, among with many others. Note, in examples, we
use a more liberal typing rule for ‘;’ allowing ybool; zcom : bool to avoid clut-
ter: it can be encoded as if y (z; tt) (z; ff). Following the methodology of game
semantics, the interpretation of (λxy.H) skip tt would yield, by composition, the

x : com, y : bool ` bool
q−

$
run+

2
q+

tt−

$

done−

2
tt+

Fig. 6: A play with tokens

strategy with only maximal play q− 6 tt+, where 6
reflects the overall 6 time units (say “seconds”) that
have to pass in total before we see the result (3 in
each thread). This seems wasteful, but it is indeed an
adequate computational analysis, because both slot
games and the operational semantics given so far im-
plicitely assume a sequential operational model, i.e.
that both threads compete to be scheduled on a sin-
gle processor. Let us now question that assumption.

Parallel Resource Consumption. With a truly concurrent evaluation in mind,
we should be able to prove that the program above may terminate in 3 seconds,
rather than 6; as nothing prevents the threads from evaluating in parallel. Before
we update the operational semantics to express that, we enrich our resource
structure to allow it to express the effect of consuming resources in parallel.

We now introduce the full algebraic structure we require for resources.

Definition 1. A resource bimonoid is 〈R, 0, ; , ‖,≤〉 where 〈R, 0, ; ,≤〉 is an
ordered monoid, 〈R, 0, ‖,≤〉 is an ordered commutative monoid, 0 is bottom for
≤, and ‖ is idempotent, i.e. it satisfies α ‖ α = α.

A resource bimonoid is in particular a concurrent monoid in the sense of
e.g. [16] (though we take ≤ in the opposite direction: we read α ≤R α′ as “α
is better/more efficient than α′”). Our Idempotence assumption is rather strong
as it entails that α ‖ β is the supremum of α, β ∈ R. This allows to recover
a number of simple laws, e.g. α ‖ β ≤ α; β, or the exchange rule (α; β) ‖
(α′; β′) ≤ (α ‖ α′); (β ‖ β′). Idempotence, which would not be needed for a
purely functional language, is used crucially in our interpretation of state.

Our leading examples are 〈N+, 0,+,max,≤〉 and 〈R+, 0,+,max,≤〉 – we call
the latter the time bimonoid. Others are the permission bimonoid 〈P(P ), ∅,∪,∪,
⊆〉 for some set P of permissions: if reaching a state requires certain permissions,
it does not matter whether these have been requested sequentially or in parallel;
the bimonoid of parametrized time 〈M, 0, ; , ‖,≤〉 with M the monotone func-
tions from positive reals to positive reals, 0 the constant function, ‖ the pointwise
maximum, and (f ; g)(x) = f(x) + g(x+ f(x)): it tracks time consumption in a
context where the time taken by consume(α) might grow over time.

Besides time-based bimonoids, it would be appealing to cover resources such
as power, bandwith or heapspace. Those, however, clearly fail idempotence of ‖,
and are therefore not covered. It is not clear how to extend our model to those.

Parallel Operational Semantics. Let us fix a resource bimonoid R. To express
parallel resource consumption, we use the many-step parallel reductions defined



Resource-Tracking Concurrent Games 7

〈M, s, α〉⇒ 〈M, s, α〉
〈M, s, α〉 → 〈M ′, s′, α′〉
〈M, s, α〉⇒ 〈M ′, s′, α′〉

〈M, s, α〉⇒ 〈M ′, s′, α′〉
〈C[M ], s, α〉⇒ 〈C[M ′], s′, α′〉

〈M, s, α〉⇒ 〈M ′, s′, α′〉 〈M ′, s′, α′〉⇒ 〈M ′′, s′′, α′′〉
〈M, s, α〉⇒ 〈M ′′, s′′, α′′〉

〈M, s, α〉⇒ 〈M ′, s′, α′〉 〈N, s, α〉⇒ 〈N ′, s′′, α′′〉
〈M ‖ N, s, α〉⇒ 〈M ′ ‖ N ′, s′ ↑ s′′, α′ ‖ α′′〉

Fig. 7: Rules for parallel reduction

in Figure 7, with call-by-name evaluation contexts given by

C[] ::= [] | []N | []; N | if []N1N2 | [] := tt | ![] | ([] ‖ N) | (M ‖ [])

The rule for parallel composition carries some restrictions regarding memory:
M and N can only reduce concurrently if they do not access the same memory
cells. This is achieved by requiring that the partial operation s ↑ s′ – that
intuitively corresponds to “merging” two memory stores s and s′ whenever there
are no conflicts – is defined. More formally, the partial order ≤M on memory
states induces a partial order (also written ≤M) on stores, defined by s ≤M s′

iff dom(s) ⊆ dom(s′) and for all ` ∈ dom(s) we have s(`) ≤M s′(`). This order
is a cpo in which s′ and s′′ are compatible (i.e. have an upper bound) iff for
all ` ∈ dom(s′) ∩ dom(s′′), s′(`) ≤M s′′(`) or s′′(`) ≤M s′(`) – so there has
been no interference going to s′ and s′′ from their last common ancestor. When
compatible, s′ ↑ s′′ maps s′ and s′′ to their lub, and is undefined otherwise.

For ` M : com, we set M ⇓α if 〈M, ∅, 0〉 ⇒ 〈skip, s, α〉. For instance,
instantiating the rules with the time bimonoid, we have

(wait(1); wait(2)) ‖ (wait(2); wait(1)) ⇓3

2.3 Non-Interleaving Semantics

To capture this parallel resource usage semantically, we build on the games model
for affine IPA presented in [5]. Rather than presenting programs as collections of
sequences of moves expressing all observable sequences of computational actions,
this model adopts a truly concurrent view using collections of partially ordered
plays. For each Player move, the order specifies its causal dependencies, i.e. the
Opponent moves that need to have happened before. For instance, ignoring the

x : com, y : bool ` bool

q−x
&oov -ssz

run+
x; 1_���

q+
x; 2
_���

done−y

� ((/

tt−z
� ##+
tt+(y; 2)‖(z; 1)

Fig. 8: A parallel R-play

subscripts, Figure 8 displays a typical partially or-
dered play in the strategy for the term H of Sec-
tion 2.2. One partially ordered play does not fully
specify a sequential execution: that in Figure 8 stands
for many sequential executions, one of which is in
Figure 3. Behaviours expressed by partially ordered
plays are deterministic up to choices of the scheduler
irrelevant for the eventual result. Because R-IPA is
non-deterministic (via concurrency and shared state),
our strategies will be sets of such partial orders.
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To express resources, we leverage the causal information and indicate, in each
partially ordered play and for each positive move, an R-expression representing
its additional cost in function of the cost of its negative dependencies. Figure 8
displays such a R-play : each Opponent move introduces a fresh variable, which
can be used in annotations for Player moves. As we will see further on, once
applied to strategies for values skip and tt (with no additional cost), this R-
play will answer to the initial Opponent move q−x with tt+x;α where α = (1; 2) ‖
(2; 1) =R+

3, as prescribed by the more efficient parallel operational semantics.
We now go on to define formally our semantics.

3 Concurrent Game Semantics of IPA

3.1 Arenas and R-Strategies

Arenas. We first introduce arenas, the semantic representation of types in our
model. As in [5], an arena will be a certain kind of event structure [27].

Definition 2. An event structure comprises (E,≤E ,#E) where E is a set of
events, ≤E is a partial order called causal dependency, and #E is an irreflexive
symmetric binary relation called conflict, subject to the two axioms:

∀e ∈ E, [e]E = {e′ ∈ E | e′ ≤E e} is finite
∀e1 #E e2,∀e1 ≤E e′1, e

′
1 #E e2

We will use some vocabulary and notations from event structures. A con-
figuration x ⊆ E is a down-closed, consistent (i.e. for all e, e′ ∈ x, ¬(e #E e′))
finite set of events. We write C (E) for the set of configurations of E. We write
_E for immediate causality, i.e. e _E e′ iff e <E e′ with nothing in be-
tween – this is the relation represented in diagrams such as Figure 8. A conflict
e1 #E e2 is minimal if for all e′1 <E e1, ¬(e′1 #E e2) and symmetrically. We
write e1 ∼E e2 to indicate that e1 and e2 are in minimal conflict.

With this, we now define arenas.

Definition 3. An arena is (A,≤A,#A,polA), an event structure along with a
polarity function polA : A −→ {−,+} subject to: (1) ≤A is forest-shaped,
(2) _A is alternating: if a1 _A a2, then polA(a1) 6= polA(a2), and (3) it is
race-free, i.e. if a1 ∼A a2, then polA(a1) = polA(a2).

Arenas present the computational actions available on a type, following a
call-by-name evaluation strategy. For instance, the observable actions of a closed

x : com, y : bool ` bool

run+ q+ q−

done− tt− ff− tt+ ff+

Fig. 9: An arena for a sequent

term on com are that it can be ran, and it may
terminate, leading to the arena com = run− _
done+. Likewise, a boolean can be evaluated,
and can terminate on tt or ff , yielding the arena
on the right of Figure 9 (when drawing arenas,
immediate causality is written with a dotted line,

from top to bottom). We present some simple arena constructions. The empty
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arena, written 1, has no events. If A is an arena, then its dual A⊥ has the
same components, but polarity reversed. The parallel composition of A and
B, written A ‖ B, has as events the tagged disjoint union {1}×A∪{2}×B, and
all other components inherited. For xA ∈ C (A) and xB ∈ C (B), we also write
xA ‖ xB ∈ C (A ‖ B). Figure 9 displays the arena com⊥ ‖ bool⊥ ‖ bool.

R-Augmentations. As hinted before, R-strategies will be collections of partially
ordered plays with resource annotations in R, called R-augmentations.

Definition 4. An augmentation [5] on arena A is a finite partial order q =
(|q|,≤q) such that C (q) ⊆ C (A) (concerning configurations, augmentations are
considered as event structures with empty conflict), which is courteous, in the
sense that for all a1 _q a2, if polA(a1) = + or polA(a2) = −, then a1 _A a2.

A R-augmentation also has (with [a]−
q

= {a′ ≤q a | polA(a′) = −})

λq : (a ∈ |q|) −→
(
R[a]−

q → R
)

such that if polA(a) = −, then λq(a)(ρ) = ρa, the projection on a of ρ ∈ R[a]−
q ,

and for all a ∈ |q|, λq(a) is monotone w.r.t. all of its variables.
We write R-Aug(A) for the set of R-augmentations on A.

If q,q′ ∈ R-Aug(A), q is rigidly embedded in q′, or a prefix of q′, written
q ↪→ q

′, if |q| ∈ C (q′), for all a, a′ ∈ |q|, a ≤q a′ iff a ≤q′ a′, and for all a ∈ |q|,
λq(a) = λq′(a). The R-plays of Section 2.3 are formalized as R-augmentations:
Figure 8 presents an R-augmentation on the arena of Figure 9. The functional
dependency in the annotation of positive events is represented by using the free
variables introduced alongside negative events, however this is only a symbolic
representation: the formal annotation is a function for each positive event. In the
model of R-IPA, we will only use the particular case where the annotations of
positive events only depend on the annotations of their immediate predecessors.

R-Strategies. We start by defining R-strategies on arenas.

Definition 5. A R-strategy on A is a non-empty prefix-closed set of R-aug-
mentations σ ⊆ R-Aug(A) which is receptive [5]: for q ∈ σ such that |q|
extends with a− ∈ A ( i.e. pol(a) = −, a 6∈ |q|, and |q| ∪ {a} ∈ C (A)), there is
q ↪→ q

′ ∈ σ such that |q′| = |q| ∪ {a}.
If σ is a R-strategy on arena A, we write σ : A.

Observe that R-strategies are fully described by their maximal augmenta-
tions, i.e. augmentations that are the prefix of no other augmentations in the
strategy. Our interpretation of new will use the R-strategy cell : JmemW K ‖
JmemRK (with arenas presented in Figure 10), comprising all the R-augmenta-
tions rigidly included in either of the two from Figure 11. These two match the
race when reading and writing simultaneously: if both wtt− and r− are played
the read may return tt+ or ff+, but it can only return tt+ in the presence of
wtt−.



10 Aurore Alcolei, Pierre Clairambault and Olivier Laurent

memW

wtt−

ok+

memR

r−

tt+ ff+

Fig. 10: JmemW K and JmemRK

memW memR

wtt−x
_���  !!*

r−y
_���

ok+
x tt+x‖y

memW memR

wtt−x
_���

r−y
_���1tt}

ok+
x‖y ff+y

Fig. 11: Maximal R-augmentations of cell

3.2 Interpretation of R-IPA

Categorical Structure. In order to define the interpretation of terms of R-IPA
as R-strategies, a key step is to show how to form a category of R-strategies. To
do that we follow the standard idea of considering R-strategies from A to B
to be simply R-strategies on the compound arena A⊥ ‖ B. As usual, our first
example of a R-strategy between arenas is the copycat R-strategy.

Definition 6. Let A be an arena. We define a partial order ≤CCA on A⊥ ‖ A:

≤CCA = ({((1, a), (1, a′)) | a ≤A a′} ∪ {((2, a), (2, a′)) | a ≤A a′}∪
{((1, a), (2, a)) | polA(a) = +} ∪ {((2, a), (1, a)) | polA(a) = −})+

where (−)+ denotes the transitive closure of a relation. Note that if a ∈ A⊥ ‖ A
is positive, it has a unique immediate predecessor pred(a) ∈ A⊥ ‖ A for ≤CCA .

If x ‖ y ∈ C (A⊥ ‖ A) is down-closed for ≤CCA (write ≤x,y for the restriction
of ≤CCA to x ‖ y), we define an R-augmentation qx,y = (x ‖ y,≤x,y, λx,y) where

λx,y : (a ∈ x ‖ y) −→
(
R[a]−

x‖y → R
)

with λx,y(a−)(ρ) = ρa, and λx,y(a+)(ρ) = ρpred(a). Then, ccA is the R-strategy

comprising all qx,y for x ‖ y ∈ C (A⊥ ‖ A) down-closed in A.

We first define interactions of R-augmentations, extending [5].

Definition 7. We say that q ∈ R-Aug(A⊥ ‖ B), and p ∈ R-Aug(B⊥ ‖ C) are
causally compatible if |q| = xA ‖ xB, |p| = xB ‖ xC , and the preorder ≤p~q
on xA ‖ xB ‖ xC defined as (≤q ∪ ≤p)

+
is a partial order.

Say e ∈ xA ‖ xB ‖ xC is negative if it is negative in A⊥ ‖ C. We define

λp~q : (e ∈ xA ‖ xB ‖ xC) −→
(
R[e]−

p~q → R
)

as follows, by well-founded induction on <p~q, for ρ ∈ R[e]−
p~q :

λp~q(e)(ρ) =


λp(e)

(
〈λp~q(e′)(ρ) | e′ ∈ [e]−

p
〉
)

if polB⊥‖C(e) = +,

λq(e)
(
〈λp~q(e′)(ρ) | e′ ∈ [e]−

q
〉
)

if polA⊥‖B(e) = +,

ρe otherwise, i.e. e negative

The interaction p~ q of compatible q,p is (xA ‖ xB ‖ xC ,≤p~q, λp~q).
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xW : memW , xR : memR ` bool

q−x
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� ))/
tt−z
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tt+(y; 2)‖(z; 1)

�

memW memR

wtt−x

_��� � ��(

r−y

_���
ok+

x tt+x‖y
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xW : memW , xR : memR ` bool
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_���
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wttx; 1_��� � ''.

rx; 2_���
okx; 1

� ))0

tt(x; 1)‖(x; 2)

� %%,tt+x; 3



Fig. 12: Example of interaction and composition between R+-augmentations

If σ : A⊥ ‖ B and τ : B⊥ ‖ C, we write τ ~ σ for the set comprising all
p ~ q such that p ∈ τ and q ∈ σ are causally compatible. For q ∈ σ and
p ∈ τ causally compatible with |p ~ q| = xA ‖ xB ‖ xC , their composition is
p � q = (xA ‖ xC ,≤p�q, λp�q) where ≤p�q and λp�q are the restrictions of
≤p~q and λp~q. Finally, the composition of σ : A⊥ ‖ B and τ : B⊥ ‖ C is the
set comprising all p� q for q ∈ σ and p ∈ τ causally compatible.

In Figure 12, we display an example composition between R+-augmentations
– with also in gray the underlying interaction. The reader may check that the
variant of the left R+-augmentation with tt replaced with ff is causally compat-
ible with the other augmentation in Figure 11, with composition q−x _ ff+x; 4.

We also have a tensor operation: on arenas, A ⊗ B is simply a synonym for
A ‖ B. If q1 ∈ R-Aug(A⊥1 ‖ B1) and q2 ∈ R-Aug(A⊥2 ‖ B2), their tensor
product q1 ⊗ q2 ∈ R-Aug((A1 ⊗ A2)⊥ ‖ (B1 ⊗ B2)) is defined in the obvious
way. This is lifted toR-strategies element-wise. As is common when constructing
basic categories of games and strategies, we have:

Proposition 1. There is a compact closed category R-Strat having arenas as
objects, and as morphisms, R-strategies between them.

Negative Arenas and R-Strategies. As a compact closed category, R-Strat is
a model of the linear λ-calculus. However, we will (as usual for call-by-name)
instead interpret R-IPA in a sub-category of negative arenas and strategies, in
which the empty arena 1 is terminal, providing the interpretation of weakening.
We will stay very brief here, as this proceeds exactly as in [5].

A partial order with polarities is negative if all its minimal events are. This
applies in particular to arenas, and R-augmentations. A R-strategy is negative
if all its R-augmentations are. A negative R-augmentation q ∈ R-Aug(A) is
well-threaded if for all a ∈ |q|, [a]q has exactly one minimal event; a R-
strategy is well-threaded iff all its R-augmentations are. We have:

Proposition 2. Negative arenas and negative well-threaded R-strategies form
a cartesian symmetric monoidal closed category R-Strat−, with 1 terminal.

We also write σ : A + //B for morphisms in R-Strat−.

The closure of R-Strat does not transport to R-Strat− as A⊥ ‖ B is never
negative if A is non-empty, thus we replace it with a negative version. Here we
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seqX : com ⊗ X → X
q−x$nnurun+

x_���
done−y

� ''.q+
y_���
v−z

� &&-v+z

ifX : bool ⊗ (X & X) → X
q−x#nntq+

x_���
tt−y

� $$,q+
y_���
v−z

� ))/v+z

parX : com ⊗ X → X

q−x
,rrz

?zz�
run+

x
_���

q+
x

_���
done−y

� $$,

v−z
|��#
v+y‖z

Fig. 13: Maximal R-augmentations of R-strategies used in the interpretation

describe only a restricted case of the general construction in [5], which is however
sufficient for the types of R-IPA. If A,B are negative arenas and B is well-
opened, i.e. it has exactly one minimal event b, we form A( B as having all
components as in A⊥ ‖ B, with additional dependencies {((2, b), (1, a)) | a ∈ A}.

Using the compact closed structure of R-Strat it is easy to build a copycat R-
strategy evA,B : (A( B)⊗A + //B, and to associate to any σ : C⊗A + //B some
Λ(σ) : C + //A( B providing the monoidal closure. The cartesian product of A
and B is A & B with components the same as A ‖ B, except for (1, a) # (2, b)
for all a ∈ A, b ∈ B. We write πi : A1 & A2 + //Ai for the projections, and
〈σ, τ〉 : A + //B & C for the pairing of σ : A + //B, and τ : A + //C.

Interpretation of R-IPA. We set JcomK = run− _ done+, JboolK as in the
right-hand side of Figure 9, JmemW K and JmemRK as in Figure 10, and JA(
BK = JAK( JBK as expected. Contexts Γ = x1 : A1, . . . , xn : An are interpreted
as JΓ K = ⊗1≤i≤nJAiK. Terms Γ ` M : A are interpreted as JtK : JΓ K + //JAK
as follows: J⊥K is the diverging R-strategy (no player move), Jconsume(α)K

JM ; N : XK = seqX � (JMK⊗ JNK)

JM ‖ N : XK = parX � (JMK⊗ JNK)

Jif M N1N2 : XK = ifX � (JMK⊗ 〈JN1K, JN2K〉)

J!M : boolK = deref � JMK

JM := tt : comK = assign� JMK

Jnew x, y inM : XK = JMK� (JΓ K⊗ cell)

has only maximal R-augmentation run−x _
done+

x;α, JskipK is Jconsume(0)K, and tt
and ff are interpreted similarly with the ade-
quate constant R-strategies. The rest of the
interpretation is given on the left, using the
two obvious isos deref : JmemRK + //JboolK
and assign : JmemW K + //JcomK; the R-
strategy cell introduced in Figure 11; and
additional R-strategies with typical R-

augmentations in Figure 13. We omit the (standard) clauses for the λ-calculus.

3.3 Soundness

Now that we have defined the game semantics of R-IPA, we set to prove that it
is sound with respect to the operational semantics given in Section 2.2.

We first introduce a useful notation. For any type A, JAK has a unique min-
imal event; write LAM for the arena without this minimal event. Likewise, if
Γ ` M : A, then by construction, JMK : JΓ K⊥ ‖ JAK is a negative R-strategy
whose augmentations all share the same minimal event q−x where q− is minimal
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in A. For α ∈ R, write LMMα for JMK without q−x , with x replaced by α. Then we
have LMMα : JΓ K⊥ ‖ LAM – one may think of LMMα as “M started with consumed
resource α”.

Naively, one may expect soundness to state that for all `M : com, if M ⇓α,
then LMM0 = done+

α . However, whereas the resource annotations in the seman-
tics are always as good as permitted by the causal constraints, derivations in the
operational semantics may be sub-optimal. For instance, we may derive M ⇓α
not using the parallel rule at all. So our statement is:

Theorem 1. If `M : com with M ⇓α, there is β ≤R α s.t. LMM0 = done+
β .

Our proof methodology is standard: we replay operational derivations as
augmentations in the denotational semantics. Stating the invariant successfully
proved by induction on operational derivations requires some technology.

If s is a store, then write cells : JΩ(s)K for the memory strategy for store s. It
is defined as ⊗`∈dom(s)cells(`) where cellε = cell, cellRα is theR-strategy with only

maximal R-augmentation wtt−x _ ok+
x‖α, cellWα has maximal R-augmentation

r−y _ tt+α‖y, and the empty R-strategy for the other cases. If s ≤M s′, then

s′ can be obtained from s using memory operations and there is a matching
R-augmentation qsBs′ ∈ cells defined location-wise in the obvious way.

Now, if σ : JΩ(s)K⊥ ‖ LAM is a R-strategy and q ∈ σ with moves only in
JΩ(s)K⊥ is causally compatible with qsBs′ , we define the residual of σ after q:

σ/(q~ qsBs′) : JΩ(s′)K⊥ ‖ LAM

If p ∈ σ with q ↪→ p, we write first p′ = p/(q~qsBs′) the R-augmentation with
|p′| = |p| \ |q|, and with causal order the restriction of that of p. For e ∈ |p′|,
we set λp′(e) to be λp(e) whose arguments corresponding to negative events e′

in q are instantiated with λq~qsBs′ (e
′) ∈ R. With that, we set σ/(q~ qsBs′) as

comprising all p/(q~ qsBs′) for p ∈ σ with q ↪→ p.
Informally, this means that, considering some q which represents a scheduling

of the memory operations turning s into s′, we extract from σ its behavior
after the execution of these memory operations. Finally, we generalize ≤R to
R-augmentations by setting q ≤R q

′ iff they have the same underlying partial
order and for all e ∈ |q|, λq(e) ≤R λq′(e). With that, we can finally state:

Lemma 1. Let Ω(s) ` M : A, 〈M, s1, α〉 ⇒ 〈M ′, s′1 ] s′2, α′〉 with dom(s1) =
dom(s′1), and all resource annotations in s1 lower than α. Then, there is q ∈
LMMα with events in JΩ(s)K, causally compatible with qs1Bs′1 , and a function

ϕ : LM ′Mα′ ~ cells′2 −→ LMMα/(q~ qs1Bs′1)

preserving ↪→ and s.t. for all p~qs′2 ∈ LM ′Mα′ ~ cells′2 , ϕ(p~qs′2) ≤R p�qs′2 .

This is proved by induction on the operational semantics – the critical cases
are: assignment and dereferenciation exploiting that if α ≤R β, then α ‖ β = β
(which boils down to idempotence); and parallel composition where compatibility
of s′ and s′′ entails that the corresponding augmentations of cells are compatible.

Lemma 1, instantiated with 〈M, ∅, 0〉⇒ 〈skip, s, α〉, yields soundness.
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Non-Adequacy. Our model is not adequate. To see why, consider:

` new xW , xR in

 wait(1); wait(2);
xW := tt; !xR;

wait(2) wait(1)

 : bool

Our model predicts that this may evaluate to tt in 3 seconds (see Figure 12)
and to ff in 4 seconds. However, the operational semantics can only evaluate it
(both to tt and ff) in 4 seconds. Intuitively, the reason is that the causal shapes
implicit in the reduction⇒ are all series-parallel (generated with sequential and
parallel composition), whereas the interaction in Figure 12 is not.

Our causal semantic approach yields a finer resource analysis than achieved
by the parallel operational semantics. The operational semantics, rather than
our model, is to blame for non-adequacy: indeed, we now show that for R = R+

our model is adequate w.r.t. an operational semantics specialized for time.

4 Adequacy for Time

For time, we may refine the operational semantics by adding the following rule

〈wait(t1 + t2), s, t0〉 → 〈wait(t2), s, t0 + t1〉

using which the program above evaluates to tt in 3 seconds. It is clear that the
soundness theorem of the previous section is retained.

We first focus on adequacy for first-order programs without abstraction or
application, written Ω(s) `1 M : com. For any t0 ∈ R+ there is 〈M, s, t0〉 ⇒
〈M ′, s ] s′, t0〉 where LMMt0 = LM ′Mt0 � cells′ and M ′ is in canonical form: it
cannot be decomposed as C[skip; N ], C[skip ‖ N ], C[N ‖ skip], C[if ttN1N2],
C[if ff N1N2], C[wait(0)] and C[new x, y inN ] for C[] an evaluation context.

Consider Ω(s) `1 M : com, and q ∈ LMMt0~cells with a top element done+
tf

in LcomM, the result – i.e. q describes an interaction between LMMt0 and the
memory leading to a successful evaluation to done at time tf . To prove adequacy,
we must extract from it a derivation from 〈M, s, t0〉, at time tf .

Apart from the top done+
tf

, q only records memory operations, which we
must replicate operationally in the adequate order. A minimal operation with
timing t is either the top done+

t if it is the only event in q, or a prefix (mt _
nt) ↪→ q corresponding to a memory operation (for instance, in augmentations
of Figure 14, the only minimal operation has timing 2). If t = t0, this operation
should be performed immediately. If t > t0 we need to spend time to trigger it
– it is then critical to spend time on all available waits in parallel :

Lemma 2. For Ω(s) `1 M : com in canonical form, t0 ∈ R+, q ∈ LMMt0~cells
with result done+

tf
, if all minimal operations have timing strictly greater than t0,

〈M, s, t0〉⇒ 〈M ′, s, t0 + t〉

for some t > 0 and M ′ only differing from M by having smaller annotations in
wait commands and at least one wait changed to skip.

Furthermore, there is q ≤R q
′ with q′ ∈ LM ′Mt0+t ~ cells with result done+

tf
.
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〈
wait(2); wait(1);
`W := tt test (!`R)

, ` 7→ ε, 0

〉
wtt2_��� � ''.

r1_���
ok2

� !!)
tt25vv�

done+
2

⇒

≤R

〈
wait(1); wait(0);
`W := tt test (!`R)

, ` 7→ ε, 1

〉
wtt2

� ''.
_���

r1_���
ok2

� !!)
tt25vv�

done+
2

⇒

≤R

〈
wait(0);
`W := tt test (!`R)

, ` 7→ ε, 2

〉
wtt2

� ''.
_���

r2_���
ok2

� !!)
tt25vv�

done+
2

Fig. 14: Spending time adequately (where testM = if M skip⊥)

Proof. As M is in canonical form, all delays in minimal operations are impacted
by wait(t) commands in head position (i.e. such that M = C[wait(t)]). Let tmin

be the minimal time appearing in those wait(−) commands in head position.
Using our new rule and parallel composition, we remove tmin to all such instances
of wait(−); then transform the resulting occurrences of wait(0) to skip.

A representative example is displayed in Figure 14. In the second step, though
!`R is available immediately, we must wait to get the right result.

With that we can prove the key lemma towards adequacy.

Lemma 3. Let Ω(s) `1 M : com, t0 ∈ R+, and q ∈ LMMt0 ~ cells with result
done+

tf
in LcomM. Then, there is 〈M, s, t0〉⇒ 〈skip,−, tf〉.

Proof. By induction on the size of M . First, we convert M to canonical form.
If all minimal operations in q ∈ LMMt0 have timing strictly greater than t0, we
apply Lemma 2 and conclude by induction hypothesis.

Otherwise, at least one minimal operation has timing t0. If it is the result
done+

t0 in LXM, then M is the constant skip. Otherwise, it is a memory operation,
say p ↪→ q with p = (rt0 _ bt0) and write also s′ = s[` 7→ s(`).Rt0 ]. It follows
then by an induction on M that M = C[!`R] for some C[], with

q/(p~ qsBs′) ∈ LC[b]Mt0 ~ cells

so 〈M, s, t0〉⇒ 〈C[b], s′, t0〉⇒ 〈skip,−, tf〉 by induction hypothesis.

Adequacy follows for higher-order programs: in general, any `M : com can
be β-reduced to first-order M ′, leaving the interpretation unchanged. By Church-
Rosser, M ′ behaves like M operationally, up to weak bisimulation. Hence:

Theorem 2. Let `M : com. For any t ∈ R+, if done+
t ∈ LMM0 then M ⇓t.

5 Conclusion

It would be interesting to compare our model with structures used in timing
analysis, for instance [23] relies on a concurrent generalization of control flow
graphs that is reminiscent of event structures. In future work we also plan to
investigate whether our annotated model construction could be used for other
purposes, such as symbolic execution or abstract interpretation.
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