
The asynchronous dynamic of some locally non-monotonic

Boolean automata networks

Aurore Alcolei
Master thesis supervised by Kévin Perrot and Sylvain Sené

Abstract

Studies on the dynamics of Boolean automata networks (BANs) have mainly fo-
cused on monotonic networks, where fundamental questions on the links relating their
static and dynamical properties have been raised and addressed. This report ex-
plores analogous questions on non-monotonic networks, and focuses more particularly
on ⊕-BANs (xor-BANs), that are BANs where every local transition function is a
⊕-function. Using algorithmic tools, we give a general characterisation of the asyn-
chronous transition graphs for most of the strongly connected ⊕-BANs and cactus
⊕-BANs. As an illustration of these results, we provide a complete description of the
asynchronous dynamics of two particular structures of ⊕-BAN, namely the ⊕-Flower
and the ⊕-Cycle Chain BANs. This second work draws new behavioural equivalences
between BANs, using rewrites on their graph description.

Contents

1 Introduction 2
1.1 Background . 2
1.2 Contribution . 3

2 Definitions, notations and some basic properties 4
2.1 Static definition of a BAN . 4
2.2 Dynamics of a BAN and the specific asynchronous mode 6
2.3 Bisimulation equivalence relation . 8

3 General results on ⊕-BANs 10
3.1 Preliminary results on ⊕-BADC . 11
3.2 Proof of Theorem 3 . 13

4 Study of some specific ⊕-BANs 15
4.1 ⊕-BA Flowers . 15
4.2 ⊕-BAC Chains . 16

5 Conclusions and perspectives 17

6 Appendix 21

1

1 Introduction

To start this report, I will first present the general context of my study and the motivations
underneath (doing a brief overview of the domain). Then I will precise my contribution
and give the road map of this document.

1.1 Background

A Boolean automata network (BAN) is a discrete interaction network, informally described
as a set of Boolean entities (the automata) whose state (in B = {0, 1}) may switch (be
updated) over time, under the influence of the states of the other entities in the network.

BANs have been introduced by McCulloch and Pitts (under the name of nerve nets)
in the middle of the last century [14]. In this seminal paper, BANs are presented both
as a model of computation and as an abstract framework in which one can model neural
activities. Thereafter, these modelling abilities kept being developed on the biological side
and BANs are now a well established model for regulation systems such as neural networks
[10, 9] or gene regulation networks [12, 28].

Since Thomas’ works [28, 29], BANs used for biological modelling are generally defined
to be asynchronous, that is, at most one automaton can be updated at a time. Adding
synchronism to a BAN will then amount to allow several automata to switch state simul-
taneously. Unless stated otherwise, all the results presented in the sequel are stated for
asynchronous BANs.

In the context of biological modelling, the Boolean state value of an entity can be
thought as the entity being active or not (respectively in state 1 or 0). Following the same
idea, the influence that one automaton has on another one describes in which circum-
stances the corresponding entity may activate, inhibit or be neutral to this other entity
(respectively have a positive, negative or no influence on the other entity).

The structure (of influences) that arises from a BAN provides a graph representation
of it. This graph representation gives their name of “networks” to BANs and is widely
used when it comes to describing the “shape” (type) of a BAN.

When considered as a whole, the states of the automata of a BAN define the configu-
ration in which this BAN is. Hence if one (or several) automaton switches state, this also
makes the whole BAN move from one configuration to another. The dynamics of a BAN
refers to its possible behaviours along time. There are basically two points of view that
one can take to study them and this gives rise to the two main branches of this field of
research:

• on the one hand, one can assume that the order in which the entities react to their
environment is known (or fixed) in advance. From there, one can predict the whole
behaviour of the system and one can try to study what kind of update sequences
leads a given BAN to a given configuration. Hence, this point of view is particularly
related to computability and complexity issues [13, 22, 8].

• on the other hand, one can assume the networks to be random. This assumption
often holds in the study of discrete dynamical system and in biological modelling
because it means that there are no predefined orders on the way the automata
are updated. In this case, it is not possible to predict the whole behaviour of the
system but one will be interested in characterising its asymptotic behaviour that is
the set of recurrent configurations in which the network may end, given an initial
configuration (such a set exists since the configuration space is finite). Of course,

2

this highly depends on the structure of the network, and being able to relate the
structure of a network to its asymptotic behaviour is one of the main objective of
the domain [16, 19, 3, 25, 24].

To position my work in this field of research, I would say that it addresses questions from
the second branch but uses algorithmic tools that may echo the first one.

As we will see later, a BAN with n automata is formally defined as a set of Boolean
functions {fi : Bn → B}ni=1 such that each function describes the local behaviour of one
automaton. These functions are called the local transition functions of the automata. A
network is said to be locally monotonic if no automata has both a positive and a negative
influence on another one. In other words, a BAN is locally monotonic if all its local
transition functions are locally monotonic (in the analytical sense).

Because this mathematical specificity matches quite well with the behaviour of gene
regulation networks, locally monotonic BANs have been well studied, both on the applied
side [17, 7] and on the theoretical side [11, 23, 16, 19, 21]. However, recent works [20] have
brought new interests in local non monotony. On the biological side, it has been shown
that, sometimes, gene regulations imply more complex behaviour than what is usually
assumed, as this is for example the case when one also takes in account the effect of their
byproducts [27]. In this case, locally non monotony may be required for modelling, in
particular because this allows to express sensitivity to the environment. On the theoretical
side, it has been noticed [18, 21] that non local monotony is often involved when it comes
to singular behaviours in BANs. For example it has been shown that the smallest network
that is not robust to the addition of synchronism (i.e. allowing some automata to update
simultaneously) is a locally non-monotonic BAN [18, 21].

Following these lines, the work presented in this report contributes to a better under-
standing of locally non-monotonic BANs.

1.2 Contribution

Because the set of locally non-monotonic BANs is very broad, this work focuses on ⊕-
BANs, that is, BANs in which the state of each automaton is updated by xoring the
state value (or the negated state value) of its incoming neighbours. The choice of ⊕-
BANs amounts from the xor operator being the only binary Boolean operators to be non-
monotonic (with the equivalence) . Hence ⊕-BANs are the simplest locally non-monotonic
BANs one can think of.

A first attempt to characterise these networks is proposed in [21, 20] and focuses on
⊕-circulant networks. Following this constructive approach, I first looked at other BAN
structures that combine cycles, such as the double-cycle graphs [2, 15], the flower-graphs [3]
and the cycle chains. All these BAN structures belong to the family of cactus graphs (since
any two of their simple cycles have at most one automaton in common) which is a well-
known family in the (locally) monotonic context [2, 3, 15].

Happily, it turned out that the results I got with these preliminary studies were in
fact generalisable to a wider set of ⊕-BANs: the strongly connected ⊕-BANs with an
induced double cycle of size greater than 3. I will give a precise definition of these BANs
in the following section. However, let us mention here that this family of BANs contains
in particular every strongly connected cactus BAN and that its characterisation heavily
relies on that of the Boolean automata double cycles (BADCs).

As mentioned above, Section 2 introduces all the definitions, notations and basic results
from BAN theory that are used in this report. Then Section 3 presents (and proves) the

3

general result obtained about the asynchronous dynamic of strongly connected ⊕-BANs
with an induced BADC of size greater than 3. To do so, Section 3 also provides a full
characterisation of ⊕-BADCs, used as a starter for the proof of the main result. Section 4
illustrates the results of Section 3 with a full characterisation of two types of ⊕-BANs, the
⊕-flower BANs and the ⊕-cycle chain BANs. This also provides new bisimulation results
specific to ⊕-BANs, that is, equivalence results between ⊕-BANs. Finally, Section 5 is
dedicated to the conclusion and perspectives of this present work.

Remark. In the following, proofs are sometimes omitted or shortened. The mention
“sketch” implies that a full version can be found in the Appendix.

2 Definitions, notations and some basic properties

This section introduces the main definitions and notations used in the rest of this report.
It also presents some basic results related to them. In particular it describes the static
representation(s) of BANs (as Boolean function sets and as interaction graphs), their
dynamics (viewed as transition graphs), and the important notion of bisimulation which
is an equivalence relation over the set of Boolean networks. This section ends on a short
discussion about the pertinence of these definitions.

2.1 Static definition of a BAN

Generalities on BANs A Boolean automata network (BAN) is defined as a set of
Boolean automata that interact with each other. The size of a network corresponds to
the number of automata in it. For a network N of size n we denote V = {1, . . . , n} the
corresponding set of automata.

A Boolean automaton i is an automaton whose state has a Boolean value xi ∈ B =
{0, 1}. The Boolean vector x = (xi)

n
i=1 that gathers together the states of all automata

in the network is called a configuration of N . We will shorten by xi the configuration x
where the state of the ith automaton is negated and similarly, for any subset I of V, xI

will denote the configuration x where the states of the automata in I are negated.
The state of an automaton can be updated according to its local transition function

fi : Bn → B. This local function characterises how the automaton may react in a given
configuration: just after being updated, the state of i has value fi(x) where x is the
configuration of the network before the update. We say that i is stable in x if fi(x) = xi.
It is unstable otherwise. By extension we say that x is stable if all the automata of N
are stable in x. Hence a network N is completely described by its set of local transition
functions, N = {fi}ni=1.

An automaton i is said to be an influencer of an automaton j if there exists a config-
uration x such that fj(x) 6= fj(x

i). In this case j is said to be influenced by i. We denote
by Ij the set of influencers of j.

In a BAN, a path, p = i0i1 . . . ik, of length k is a sequence of distinct automata such
that for all 1 ≤ j ≤ k, ij−1 ∈ Ij . By extension, a BAN is strongly connected if there is a
path between every two automata.

A nude path, π = i0i1 . . . ik, is a particular path such that for all automata ij ∈ π
(j > 1), ij−1 is the unique influencer of ij i.e. Ij = {ij−1}. In other words, for all
1 ≤ j ≤ k, fij (x) = xij−1 or fij (x) = xij−1 . This allows us to define the sign of a nude
path as the parity of the number of local functions of the form fi(x) = xi−1 that compose

it, i.e. sign(π) =
(∑n

j=1 1fj(x)=xj−1

)
mod 2. A nude path is maximal if any extension of

4

it is not a nude path. We will denote by πi the maximal nude path that ends in automaton
i. Paths and nude paths get their name from the graphical representation that is often
associated to BAN as we will see thereafter.

To get a sense of what a network looks like, it is common to give a graphical repre-
sentation of it. To every local function fi, one can associate a Boolean formula Fi over
the variables xi. The literal associated to the kth occurrence of the variable xi is denoted
by σk(xi) where σk is the sign of the literal. Then the interaction graph of N according
to these formulae is the signed directed multigraph GF = (V,AF), where V = {1, . . . , n}
is the set of nodes of GF with one entry points per literal in Fi, and A is the set of arcs
defined by (i, j, σk) ∈ A if the kth occurrence of the variable xi in Fj has sign σk (see
Figure 1a).

With such a definition, the interaction graph of a BAN is not unique, it depends on the
choice of the formulae Fi. The uniqueness can be achieved by choosing a normal form for
the writing of the formulae. In this context, the type of a BAN will refer to the underlying
structure of its interaction graph (ignoring the labels). In other words, we will say that
two BANs are of the same type if they have the same local formulae modulo the sign of
the literals and a renaming of the automata, or, equivalently, if their interaction graphs
are isomorphic modulo the sign on their arcs.

As we focus on⊕-BANs, we make the natural choice of representing every local function
fi by a formula in Reed-Muller canonical form, that is Fi =

⊕
j∈Ii σj(xj). Then, the

interaction graph GN of a ⊕-BAN N will refer to this particular interaction graph. In
this representation, the incoming neighbours of an automaton i in GN are exactly the
influencers of i in N , in other words, the set {j | (i, j, σj) ∈ A} equals Ii. Hence there
is a one to one correspondence between the paths of N (resp. nude paths of N) and the
paths of GN (resp. the paths of GN such that every node in the path, except possibly the
head, has only one incoming neighbour). Because of this correspondence we will allow us
to switch from one representation to another without making this explicit.

We now have the tools to precise a little more the kind of ⊕-BANs we are going to
look at.

Basic interaction structures investigated The simplest interaction structure that al-
lows for complex behaviour is the cycle structure [26]. A Boolean automata cycle (BAC) C
of size n is a BAN defined as a set of local functions {fi}ni=1 such that fi(x) = x((i−1) mod n)

or fi(x) = x((i−1) mod n) for all i ∈ {1, . . . , n}. Abusing notation we will often express fi
via its formula representation Fi = σi(xpred(i)) where pred(i) = (i− 1 mod n) is the only
influencer of i in C and σi is its sign (either the identity or the negation function).

In the following, the majority of the networks or patterns we discuss are made of cycles
that intersect each other. If an automaton i is the intersection of ` distinct cycles, then
its local transition function will be fi(x) =

⊕`
j=1 σj(predj(i)) where predj(i) represents

the predecessor of i in each of the incident cycles.
If a BAN is described in terms of simple cycles, C1, . . . , Cm, intersecting with each

other, we will often represent its size by a vector of m natural numbers n = (n1, . . . , nm),
where nk is the size of the kth cycle. We will also use this vector representation to describe
the configurations of the BAN: x = (x1, . . . , xm) ∈ Bn1 × . . . × Bnm will represent the
configuration where each cycle Ck is in configuration xk ∈ Bnk . By extension xkj will

denote the state of automaton ikj which is the jth automaton of cycle Ck.
As one can expect, a strongly connected ⊕-BAN is a ⊕-BAN whose interaction graph

is strongly connected. Hence the type of these BANs can always be described as a set of

5

simple cycles and intersection automata. Strongly connected cactus ⊕-BANs are special
strongly connected ⊕-BANs where any two simple cycles intersect each other at most
once [4]. The simplest example of such BANs are the ⊕-Boolean automata double-cycles
(⊕-BADCs). These ⊕-BANs are described by two cycles C1, C2 that intersect at a unique
automaton o = i11 = i21. The ⊕-BAN depicted in Figure 1a is in fact a ⊕-BADC of size
(2, 1) = 2 + 1− 1 = 2.

2.2 Dynamics of a BAN and the specific asynchronous mode

Update modes and Transition graphs As previously mentioned, the configuration
of a network may change in time along with the local updates that are happening. A
local update is formally described by a subset W of V which contains the automata to be
updated at a time. We say that W is asynchronous if it has cardinality 1, that is, W = {i}
for some i ∈ V .

An updateW makes the system move from a configuration x to a configuration x′ where
x′i = fi(x) if i ∈ W , and x′i = xi otherwise. This defines a global function FW : Bn → Bn

over the set of configurations.
A network evolves according to a particular mode M ⊆ P(V) if all its moves are due

to updates from M . The asynchronous mode of a BAN of size n is then defined by the set
A = {{i}}ni=1 of asynchronous updates, it is non-deterministic. Note that our definition of
update mode is not fully general [19] but sufficient for the scope of this work.

We say that a configuration x′ is reachable from a configuration x (in a modeM) if there
exists a finite sequence of updates (Wt)

s
t=1 (in M) such that FW1 ◦ . . .◦FWs(x) = x′. Then,

a configuration is unreachable (in M) if it cannot be reached from any other configuration
but itself (in M). Finally a fixed point (of M) is a configuration x such that FW (x) = x for
every update W (in M). Note that x is a fixed point of a network N in the asynchronous
update mode if and only if fi(x) = xi for all i ∈ V , i.e. if and only if x is a stable
configuration.

The study of the dynamics of a network under a particular update mode aims at
making predictions, i.e. given an initial configuration x, we want to tell what are the
possible sets of configurations in which the network can end asymptotically. These sets
are called attractors of the network and the set of configurations from which they can be
reached are their attraction basins. Notice that a fixed point is an attractor of size 1.

The dynamics of a network N according to an update mode M can be modelled by a
labeled directed graph GM

N = (Bn,
⋃

W∈M FW), called the M-transition graph of N , such
that:

• the set of vertices Bn corresponds to the 2n configurations of N .

• the arcs are defined by the transition graph of the functions FW for all W ∈M , that

is, x
W−→ x′ is an arc of GM

N if and only if W ∈M and FW (x) = x′.

The transition graph GA
N associated to the asynchronous update mode is called the asyn-

chronous transition graph ofN , shorten ATG. Figure 1 (b) shows the ATG of the ⊕-BADC
depicted on the left.

In terms of transition graph, an attractor of N for the mode M corresponds to a
terminal strongly connected component of GM

N , that is, a strongly connected component
that does not admit any outgoing arcs. The attraction basin of an attractor corresponds
to the set of configurations in GM

N that are connected to this component. Conversely, the
unreachable configurations of M are the configurations that do not have any incoming arcs

6

id()

+

+

−

21

10 11

00 01{1}

{1} {1}

{2}

{2}

{2} {1}, {2}

(a) (b)

⊕

Figure 1: (a) The interaction graph of BAN {f1(x) = x2, f2(x) = x1 ⊕ x2} and (b) its
asynchronous transition graph.

but self-loops in GM
N . For example, in Figure 1b, the configuration 10 is unreachable, the

configuration 11 is a fixed point and its attraction basin the whole set of configurations.
To this extent, most of the results presented in the following are expressed in terms of

walks and descriptions of the asynchronous transition graphs of the networks we study.

Basic properties of the asynchronous mode At this point we pause on the above
definitions to state some general remarks about the set of fixed points and unreachable
configurations of the ATG of any BAN. These remarks will help us in the sequel to de-
tail the description of the ATGs of the ⊕-BANs we study. They will also be necessary
preliminaries to the proof of Theorem 3 that we will give in Section 3.

Lemma 1. The set of unreachable configuration is exactly the set of configurations x such
that fi(x

i) = xi.

Proof. This statement is easily shown by contradiction: Let x be as above and suppose that
x is reachable from some configuration x′ with x′i 6= xi for some i ∈ V . The set of automata
in N that must be updated to go from x′ to x is non-empty so let j be the last automaton
to be (effectively) updated in the path from x′ to x and let x′′ be the configuration just

before the update. We have x′′
j

= x so fj(x
′′) = fj

(
x′′

j
j
)

= fj
(
xj
)

= xj = x′′j and so

the update is not effective. This is a contradiction.

This simple result is useful when studying the structure of the transition graph because
it enables to evince the unreachable configurations when one tries to characterise the set
of configurations that are reachable from a given configuration. In particular, we will see
(Theorem 3) that in any strongly connected ⊕-BAN with an induced ⊕-BADC of size
greater than 3, the only configurations that cannot be reached from a given unstable con-
figuration are exactly the unreachable configuration. Moreover, Lemma 1 also generalises
some intermediate results stated in [15].

As mentioned previously, a configuration x is a fixed point if and only if for all i in
V , fi(x) = xi. Hence, in a fixed point, the state of the automata along a nude path is
completely determined by the head of this nude path. This leads to the following bound
on the number of possible fixed points, that is related to the set of work [1, 5, 6].

Lemma 2. For any BAN N , the maximum number of fixed points in its ATG is 2k,
where k is the number of automata i such that πi is of length 0 (i.e. k is the number of
“intersection automaton” in the interaction graph of N).

7

Proof. As we have noticed above, a stable configuration is completely determined by the
states of the head of its maximal nude paths. Hence there is at most 2k distinct stable
configuration in GA

N .

This bound is rough and we believe that it is possible to lower it for subclasses of
networks. However, if we define the contraction of a network to be the network obtained
by removing any automaton i sucht that πi has length greater than 1 and replacing its
variable xi by the variable associated to the head of πi in the remaining local functions,
then any BAN whose contraction results in the trivial network {fi(x) = xi}i∈V reaches
the bound of 2k fixed points.

Also, notice that from Lemma 1 the unreachable configurations of a network N =
{fi}ni=1 are exactly the fixed points of the reverse network NR = {fRi }ni=1 defined by

fRi (x) = fi(xi). N and NR are of the same type hence the maximum number of fixed
points for the type of N will also be its maximum number of unreachable configurations.
Moreover, this also implies that if all the networks of a given type pertain to the same
bisimulation class (defined in the next subsection) then their number of unreachable con-
figurations and their number of fixed points are equal.

2.3 Bisimulation equivalence relation

We conclude this section with a quick reminder on bisimulation which is an equivalence
relation over the set of BANs that expresses the fact that two networks “behaves the same
way” (up to a renaming of their automata and/or of their configurations). More precisely,
the equivalence of N and N ′ means that, for any update mode M , the transition graphs
GM
N and GM

N ′ are isomorphic.

Definition 1. Two BANs N and N ′ bisimulate each other if there exist two bijections
ϕ : V → V ′ over the set of automata and φ : Bn → Bn over the set of configurations such
that for any update W ⊆ V in N , the corresponding update ϕ(W) acts the same way in
N ′, that is, for all configurations x, φ(FW (x)) = F ′ϕ(W)(φ(x)).

This definition of bisimulation for BANs has been introduced by Noual in [19]. To
prove a bisimulation relation between two networks we will often prefer to use a stronger
condition than the one given in the definition, but which has the advantage of being local.

Lemma 3. Two BANs N = {fi}ni=1 and N ′ = {f ′i}ni=1 bisimulate each other if there exists
a bijection ϕ : {1, . . . , n} → {1, . . . , n} and a set {φi : B→ B}ni=1 of (non constant) Boolean
functions such that for all automata i, φi ∈ {id, neg}, and for all configurations x ∈ Bn,
φi(fi(x)) = f ′ϕ(i)(φ(x)) where φ(x) is defined componentwise by φ(x)i = φϕ−1(i)(xϕ−1(i)).

Proof. (sketch) The proof is quite straightforward since the equality φi(fi(x)) = f ′ϕ(i)(φ(x))

between the local functions induces the equality φ(FW (x)) = F ′ϕ(W)(φ(x)) between the
global functions for any update W .

In her thesis [19], Noual also shows some general bisimulation results that we recall
(and extend) here.

Theorem 1 ([19]). Let N = {fi}ni=1 be a BAN and N⊥ = {f⊥i }ni=1 be its dual network
defined as f⊥i (x) = fi(x) then N and N⊥ bisimulate each other.

Proof. Take ϕ to be the identity on V (ϕ = idV) and define φ : Bn → Bn such that

φ(x) = x (i.e. φi = neg), then φi(fi(x)) = fi(x) = fi(x) = fi(φ(x)) = f⊥i (φ(x))

8

Theorem 2 ([19]). Let N = {fi}ni=1 be a BAN and N+ = {f+i }ni=1 be its canonical
network defined as (i) f+i (x) = xj if fi(x) = xj or xj, and (ii) f+i (x) = fi(x

I) otherwise,
where I = {i ∈ V | sign(πi) = 1} is the set of automata whose maximal incoming nude
path has negative sign. Then N and N+ bisimulate each other.

Proof. Take ϕ = idV and for all i ∈ V defined φi to be: (i) the Boolean identity if πi = i
(i.e. πi of length 0 and i is an intersection automaton), or if sign(πi) = 0; (ii) the Boolean
negation otherwise (if sign(πi) = 1 i.e. iinI). Then by induction on each nude path
π = i0i1 . . . ik of N we prove that we prove that for all ij ∈ π, φij (fij (x)) = f+ϕ(ij)(φ(x)) =

f+ij (φ(x)) (∗). Hence (∗) hold for all automata in N .
The detail of the proof by induction is as follows:

- (base case: j = 0) πi0 = i0 so φi0(fi0(x)) = fi0(x) = fi0(xI
I
) = fi0(φ(x)

I
) =

f+i0 (φ(x)). Hence (∗) holds for the head of π.

- (induction step: j > 1) suppose that (∗) holds for ij−1 then:

(i) if sign(πij) = sign(πij−1) (i.e. fij (x) = xij−1) then φij = φij−1 and so φij (fij (x)) =
φij−1(xij−1) = f+ij (φ(x));

(ii) if sign(πij) 6= sign(πij−1) (i.e. fij (x) = xij−1) then φij = φij−1 and so φij (fij (x)) =

φij−1(xij−1) = φij−1(xij−1) = f+ij (φ(x)).

Theorem 1 is of importance because it tells us that all the results stated in the sequel
for ⊕-BANs will also hold for ⇔-BANs, which are their dual BANs (BANs with local
functions are of the form fi(x) =⇔

j∈Ii
σ(xj)). Moreover, Theorem 2 is very useful when

studying particular types of networks because it reduces a lot the number of cases to study.
Indeed, it says that one only needs to focus on the networks with positive nude paths to
characterise the whole set of possible transition graphs of a given type of networks.

We will make great use of Theorem 2 and Lemma 3 in Section 3 and 4.

A note about the definitions in Section 2
In the literature, the notion of interaction graph is slightly different from the one pre-

sented in Section 2.1: there is an arc between two automata i and j in GN if and only if i
is an influencer of j (i.e. there exists a configuration x ∈ Bn such that fj(x) 6= fj(x

i)). In
other words, the interaction graph of an network is usually a simple representation of the
influence that the automata have on each other. Then, in the case of locally monotonic
networks it is also common to sign the arcs of GN to add extra information on the type
of influence (positive or negative) that one automaton has on another.

While their graph representation is a useful tool to study BANs, I could not work with
the usual definition of interaction graph for two main reasons.

The first one was that two networks with the same interaction graph (in the original
sense) do not necessarily have the same behaviour (it is enough to think about a BADC
where the central automaton is either a ⊕-(xor) or a ∨-(or) function). Hence the result
of canonicity present in [19] and that we remind in the above section could not hold as
stated! (while the idea behind it was perfectly right).

The second reason was that classically interaction graphs were used to describe locally
monotonic BANs, where the notion of positive/negative influence makes sense for every

9

nodes and was added as extra bits of information to the graph representation. However, in
the context of locally non-monotonic BANs the interaction graphs were left with very few
information and this graph representation was not precise enough to state any interesting
result about there corresponding networks. That is why we came up with another definition
of interaction graph, that fully described the network it is associated with. In the end,
this definition is very close to the usual graph description of Boolean circuits.

This new definition of interaction graph also seems reasonable because it preserves the
connectivity of the original definition (which we call influence graph from now on). Indeed,
there is a path p = i0 . . . ik in the influence graph of N if and only if there is at least one
path p = i0 . . . ik with same automata in any interaction graph of N . Hence the strong
connectivity of a BAN or the presence of a cycle in its influence graph are invariant of
the choice interaction graph for N . As a consequence, the results already stated in the
literature adapt quite well to the new definition.

Moreover, it appears that most of the networks usually studied are actually �-BANs,
that is, BANs in which every local functions is obtained using an unique Boolean operator
� in {∧,∨,⊕,⇔}. It turns out that, for all of these BANs, the influence graph and the
interaction graph matches if one make the natural choice of representing the local formulae
of the interaction graph using the � operator. Hence most of the time it was assumed that
a BAN was completely described by its influence graph. In particular, this was the case
when the bisimulation result between a network and its canonical representation was first
stated (the author was at the same time working on ∨-BAN).

3 General results on ⊕-BANs

This section presents the main theorem of my work: a connexity result that characterises
the shape of the ATG of any strongly connected ⊕-BAN with an induced BADC of size
greater than 3.

Theorem 3. In a strongly connected ⊕-BAN with an induced BADC of size greater than
3, any configuration that is not unreachable can be reached from any configuration which
is not stable in a quadratic number of asynchronous updates.

This theorem told us that the ATG of any strongly connected ⊕-BAN which is not a
cycle or a clique is characterised by (see Figure 2):

• its fixed point(s) S (if any).

• its unreachable configuration(s) U (if any).

• a unique strongly connected component reachable from any configuration of U \ S
and connected to any configuration of S \U (within a quadratic number of updates).

The above results are in fact a generalisation of the characterisation and connexity
result that we got for ⊕-BADCs in the first time of our study. Furthermore, the proof of
this theorem relies on the proof of these preliminary results. For this reasons, and in order
to get the reader used to the kind of reasoning we will develop in the rest of this report,
we start this section with a full characterisation of the asynchronous dynamic of ⊕-BADC
and we will only give the proof of Theorem 3 in the second part of this section.

10

sl

...

u1

SCC
...

uk

s1

Figure 2: General ATG shape of strongly connected ⊕-BANs with an induced BADC of
size greater than 3.

3.1 Preliminary results on ⊕-BADC

Besides the role they play in the dynamic of many ⊕-BANs, ⊕-BADCs are interesting
in themselves because they are the most simple (yet non trivial) locally non-monotonic
BANs one can build.

In the following, I will prove that the asymptotic behaviour of ⊕-BADCs in the asyn-
chronous mode is very simple: every ⊕-BADC has a unique fixed point which is reachable
in a linear number of updates. This result might not be very exciting with regards to its
complexity but it provides a good example to present the kind of reasoning used in the
sequel. Moreover, despite their apparent simplicity ⊕-BADCs are in fact very expressive
and in particular I will also show that their structure provides a powerful way to generate
reachable configurations.

Asymptotic behaviour By definition the interaction graph associated to a BADC is a
double cycle graph with one intersecting point o. Hence Theorem 2 states that for a given
type of BADC, there are only three different bisimulation classes to study: the positive
one, the negative one and the mixed one, that respectively correspond to the case where
fo(x) = x11 ⊕ x21, fo(x) = x11 ⊕ x21 and fo(x) = x11 ⊕ x21. We now show that, in the case of
⊕-BADCs, these three classes actually reduce to one.

Lemma 4. The set of ⊕-BADC of size (n1, n2) admits exactly one bisimulation class.

Proof. (sketch) This is induced by the fact that the positive ⊕-BADC representative bisim-
ulates both the negative and the mixed ⊕-BADC representatives: In the first case, the
equality x11⊕x21 = x11⊕x21 implies that the positive and the negative ⊕-BADCs are trivially
equivalent; in the second case the bijection φ(x) = xV over the set of configuration satis-
fies the condition from definition 1, proving that positive ⊕-BADCs and mixed ⊕-BADCs
bismulate each other.

Because of these reductions, we only need to focus on the asymptotic behaviour of
positive ⊕-BADCs to fully characterise the asymptotic behaviour of any ⊕-BADCs.

There are several ways to compute the fixed points of a ⊕-network. One way is to com-
pute the solution of the linear system Ax = x where A is the adjacency matrix associated
to the interaction graph of the network. Another way is to fix the state of one automaton
and propagate the information that this choice implies on the state of the other automata
in the network, making new choices when necessary, until having completely fixed the
configuration or until reaching a contradiction. This basic backtracking algorithm is not

11

an efficient way of computing fixed points but it is useful to prove that some configura-
tions cannot be stable. In particular, it helps us show that the asymptotic behaviour of a
⊕-BANs is quite simple: from any configuration, the system converges to a unique fixed
point.

Lemma 5. A positive ⊕-BADC of size (n1, n2) admits a unique fixed point x = (0n1 , 0n2).

Proof. In a positive ⊕-BADC D, any configuration x that contains an automaton i in
state 1 is unstable. Indeed suppose for the sake of contradiction that x is stable, then o,
and so every automata in D, are in state 1 (because updates for o to i lead to xi = xo), so
x = 1n. But 1n is not stable since fo(x) = xn1 ⊕ xn2 = 0 6= xo = 1. Furthermore, we can
check that x = 0n is indeed a fixed point since for all i, fi(x) = 0: (i) if i = ikj 6= o then

fi(x) = xkj−1 = 0, and (ii) if i = o then fi(x) = xn1 ⊕ xn2 = 0⊕ 0 = 0.

Using the remarks from Section 2.2 and the lemma above we can thus conclude that
any ⊕-BADC admits exactly one fixed point and one unreachable configuration in its
transition graph.

Connexity We now go one step further and show that the rest of the ATG is made of
a unique strongly connected component that can reach its fixed point in a linear number
of updates if n is greater than 3. These results are base on the following lemma:

Lemma 6. In a positive ⊕-BADC D of size greater than 3, if D is in an unstable con-
figuration x then for all automaton i there exists an other unstable configuration y where
i is unstable and that is reachable from x in a linear number of updates.

Proof. The proof uses the fact if that if D is unstable then there exists at least one
automaton ijk in state 1. Hence one can reach a configuration where at least one influencer
of the central automaton o of D is in state 1 by propagating this state along Ck. This leads
to a configuration where o is unstable and thus able to propagates instability to every other
automaton in the network. More precisely, in a positive ⊕-BADC, if the central automaton
receives a value 1 from one of its influencers then it can switch state as many times as
desired by sending its own state along the opposite cycle. To make this explicit, suppose
that xpred1(o) = 1 then updtating the automata along C2 will lead to a configuration where
xpred2(o) = xo and so fo(x) = xpred1(o)⊕xpred2(o) = 1⊕xo = xo. Hence it is possible to set

any automaton ikj of D to some state b, by setting o to b and then propagating b along Ck
until reaching j. Moreover, one can ensure that this will be possible again, if in the end
at least one of the two predecessors of o is in state 1. The only threat for breaking this
rule is when ikj = iknk

and b = 0, i.e. when ikj is an influencer of o and when we want to
set it to 0. In that case we need to set the opposite predecessor to 1 right after starting
propagating b in Ck, that is right after setting ik2 to b. This is only possible if D is at least
of size 3.

Lemma 6 is interesting because it reveals the “generator nature” of ⊕-BADCs. From
there one can deduce two propositions characterising the ATG of a ⊕-BADC.

Lemma 7. In a positive ⊕-BADC of size (n1, n2), the configuration 0n is reachable from
any other configuration in a linear number of updates.

Proof. Using the algorithm from Lemma 6 we know how to set o to the state 0 in a linear
number of updates from any unstable configuration (which is the case of any configuration
different from 0n, by Lemma 5). Then it is enough to propagate this state in C1, C2 to
reach 0n in another linear number of steps.

12

Lemma 8. In a ⊕-BADC, every configuration which is not unreachable can be reached
from any other (unstable) configuration in O(n2) (and the bound is tight).

Proof. (sketch) The proof uses the same generator trick as in the proof above. The idea
is first to reach a “highly expressive” configuration y from which any other configuration
can be reached in a linear number of updates. y is said to be highly expressive because
it contains only unstable automata except the automaton i that is suppose to be stable
in the configuration to reach (i exists since x′ is reachable). From there, updating the
automata in an order such that every automaton is updated before one of its influencer,
except i that is updated last, will lead to the desired configuration. The quadratic factor
arises when one sets the network to y because one needs to set almost every automata
in an unstable state and this take a linear number of updates for each automata, as in
Lemma 6.

Summarising all the results we gave in this subsection, we can say that the ATG of a
⊕-BADC contains exactly one fixed point, one unreachable configuration, and one strongly
connected component (SCC), such that the maximal distance between two reachable con-
figurations is quadratic and the maximum distance between one configuration and the
fixed point is linear (in n).

3.2 Proof of Theorem 3

We now give the main ideas of the proof of Theorem 3. Let N be a strongly connected
⊕-BAN with an induced BADC D of size greater than 3, let x be its initial (unstable)
configuration, and let x′ be the configuration to reach. The idea behind the proof of
Theorem 3 is to take advantage of the high expressiveness of ⊕-BADCs and to use D as a
“state generator” that sends information across the network in order to set up the state of
every automata of N to their value in x′. More precisely, the proof of Theorem 3 is based
on Lemmas 6 and 8 and on the following lemma:

Lemma 9. In a ⊕-BAN N , if i and j are two automata such that there is a path from i
to j, then for any configuration x such that i is unstable in x there exists a configuration
x′ reachable from x such that j is unstable in x′.

Proof. (sketch) The proof is based on the fact that, in a ⊕-BAN, making a stable automa-
ton become unstable can only be achieved by switching the state of one of its incoming
neighbours (because the state of an automaton depends on the parity of the number of its
incoming neighbours in state 1). So let i and j be two automata as described in Lemma 9,
let p = i0, i1, . . . , ik be a shortest path (in the interaction graph of N) from i = i0 to j = ik
and let i` denotes the last automaton in p that is unstable. Then updating along p from i`
to ik−1 (so that nothing happens if ` = k, i.e. if j is unstable) will lead to a configuration
where j is unstable. This is straightforward from the remark above. The only subtlety is
the choice of the path which must ensure that the update of one automaton only affects
the next automaton on the path but not the automata after it, and this is true if one takes
a shortest path.

Proof. (sketch for Theorem 3) Putting things together we can now describe the algorithm
underlying the proof of Theorem 3: the network N starts in an unstable configuration so,
by Lemma 9, it can reach a configuration y where an automaton of its induced ⊕-BADC D
(hence D) is unstable. According to Lemma 6 and the developments above, if D is unstable
then the state of any of its automata can be switched and this process can be repeated

13

as many times as necessary while leaving D in an unstable configuration. Through this
extent, D can be viewed as a “state generator” that can propagate instabilities through the
network. Indeed, N is strongly connected so there is a path from D to every automata out
of D. As a consequence, using the algorithm from Lemma 9, we are able to set the state of
every of these automata to their value in x′. One subtlety is to find an order to process the
automata so as to guarantee that setting an automaton to its state in x′ will not switch
the state of the automata that have already been set up. We deal with this problem by
using a breadth first search tree of root D: we set up the automata from the leaves to
the root and use the branches of the tree to be the paths used in the algorithmic process
of Lemma 9. Finally, when everything is fixed outside of D (D is still in an unstable
configuration) we apply Lemma 8 to fix D and reach x′.

There are two subtleties to the above description. The first one is that switching the
state of the automata outside of D can leave D in a stable configuration, hence blocking the
mechanism. It is possible to avoid that by modifying the states within D according to the
change of its environment, but in some case this requires to have at least 3 automata in D,
hence the condition in Theorem 3. The second subtlety is in the last step, when it comes to
setting the states within D. In fact, this only works if the restriction of x′ to D is reachable
in D, that is if x′|B is not unreachable in the ATG of D with surrounding environment

x′N\B. Unfortunately this is not necessarily the case in any reachable configuration of N .
So, if this condition is not satisfied one needs to use an additional trick whose idea is the

following: x′ is reachable so there exists i ∈ N such that fi(x′
i
) = x′i. Let p = i0 . . . ik be a

a shortest path from i to D, then first reach the configuration y such that every automata
are in the state of x′ except the automata of p that are alternating and such that yik 6= xik
(hence the restriction of y to D is reachable). Then set up the state of the automata from
ik to i0 using the instability of their predecessor in p if necessary, or, for the case i0 = i

using the fact that fi(x′
i
) = x′i.

This algorithm described above is quadratic in the worst case. However, its complexity
highly depends on the structure of the network and/or the final configuration x′. For
example, if every automaton in N is at constant distance from an induced BADC of size
greater than 3, then this algorithm becomes linear in n. Similarly, since the number of
passes that are needed along a path depends on the number of alternating states along
this path in x′ (i.e. the number of automata such that x′i 6= x′pred(i) where pred(i) is
the predecessor of i in the path; this corresponds to the number of 01 or 10 patterns in
the positive case), then if this number is less than a constant in any path the algorithm
will also run in linear time. In particular, if x′ is a fixed point, then the total number
of alternating states is at most k, where k is the number of intersection automata in N
and so x′ is reachable in O(k · n) updates, which is linear if k is a constant, as this is for
example the case with the ⊕-BA Flowers defined in the next section. Finally we need to
insist on the fact that this algorithm does not always provides the most efficient sequence
of updates (for example it does not take in account the starting configuration). Hence the
complexity of this algorithm is only an upper bound on the length of the shortest path
between two configurations. Let us notice that this bound might nevertheless be reached,
as when one move from configuration 10n−1 to configuration (10)n/2 in a positive ⊕-BADC
of size n (these considerations on 01 patterns are similar to the notion of expressiveness
defined on the monotonic case in [15]).

14

4 Study of some specific ⊕-BANs

We now give a complete characterisation of two specific types of ⊕-BAN: the ⊕-BA Flow-
ers and the ⊕-BAC Chains. For each of these two types of BANs, we describe their
bisimulation classes and give their number of fixed points and unstable configurations.
This illustrates the results of Section 3, and introduces new bisimulations that are general
enough to be used in the study of other types of ⊕-BAN.

4.1 ⊕-BA Flowers

A ⊕-BA Flower (⊕-BAF) with m petals is defined as a set of m cycles that intersect at
a unique automaton o = i11 = . . . = ik1 (⊕-BADC correspond to the case m = 2). There
are at most two bisimulation classes for a given type of flower (i.e. for a given number of
petals m and size (n1, . . . , nm)).

Lemma 10. The set of ⊕-BAF with m petals of size (n1, . . . , nm) admits one bisimulation
class if m is even and two if m is odd.

Proof. Similarly to what is done in Section 3.1 for the ⊕-BADCs, we restrict our study
to the canonical ⊕-BAFs, that are the ⊕-BAFs such that the only negative literals are in
the local function of o (Theorem 2). Then, because of the identity b1 ⊕ b2 = b1 ⊕ b2 for
all Boolean values b1 and b2, the sign of any pair of negative literals cancel in fo, and so
there are at most two equivalence classes: the positive one, that have only positive literals
because all negative literals cancel (i.e. there is an even number of negative paths in the
original BAF), and the negative one that have exactly one negative literal in fo (i.e. there
is an odd number of negative paths in the original BAF). In the case where m is even,
the bijection φ(x) = xV over the set of configurations defines an isomorphism between
the ATGs of the negative and the positive ⊕-BAF of same type, therefore the negative
and positive classes coincide. In the case where m is odd, the two classes are distinct
since, in particular, they do not have the same number of fixed points, as this is shown in
Lemma 11.

Lemma 11. A positive ⊕-BAF with m petals has a unique stable configuration, 0n, if m
is even and two stable configurations, 0n and 1n, if m is odd. A negative ⊕-BAF (with an
odd number of petals) does not have any fixed point.

Proof. We use the same approach as the one explained in the proof of Lemma 5, fixing
the state of one automaton and cascading this choice onto the other in order to reach a
stable configuration or a contradiction. For example, in a positive ⊕-BAF F with an even
number of petals, we can prove that any configuration x that contains an automaton i in
state 1 is unstable. Indeed suppose for the sake of contradiction that x is stable, then o,
and so every automata in F , are in state 1 (because updates for o to i lead to xi = xo),
so x = 1n. But 1n is not stable since fo(x) =

⊕m
k=1 1 = 0. Similarly we prove that in a

negative ⊕-BAF with an odd number of petals, if a configuration contains an automaton
in state 0, respectively an automaton in state 1, then it cannot be stable, and so the
network has no fixed points.

The results above enable us to fully characterise the ⊕-BAFs of a given type:

• if F is a ⊕-BAF with an even number of petals then F and its reverse network
FR both have ATGs isomorphic to the ATG of the positive ⊕-BAF, consequently

15

(1) (5)−

−
. ≡

+

+

.

− − −

+ + +

. ≡
+ + +

+ + +

.

(2) (6)+

−
. ≡

−

+

.

+ + −

+ + +

. ≡
− − +

+ + +

.

(3) (7)− −

+ +

. . . ≡
− +

+ +

. . .

− + −

+ + +

. ≡
− − +

+ + +

.

(4) (8)+ −

+ +

. . . ≡
+ +

+ +

. . .

+ − −

+ + +

. ≡
− + +

+ + +

.

Figure 3: Table of ⊕-equivalences.

GA
F has exactly one unreachable configuration, one fixed point, and one SCC of size

2n − 2.

• if F is a ⊕-BAF with an odd number of petals then the ATG of F can have four
different forms depending on the size of F and its bisimulation class. Indeed, if F
has an even number of petals of even sizes and a self loop, or if it has an odd number
of petals of even sizes and no self loop, then F and FR are in the same bisimulation
class ; otherwise they are in different classes. Hence the ATG of F has one of the
following forms: (i) a unique SCC of size 2n if F and FR are in the negative class ;
(ii) two unreachable configurations, two fixed points, and one SCC if F and FR are
in the positive class; (iii) two fixed points, and one SCC if F is in the positive class
and FR in the negative class ; (iv) two unreachable configurations, one SCC if F is
in the negative class and FR in the positive class.

4.2 ⊕-BAC Chains

A ⊕-BAC Chain (⊕-BACC) of length m is described by a set of m cycles and m − 1
intersection automata, ok, such that for all 1 ≤ k < m, the cycle Ck intersects the cycle
Ck+1 at a unique point ok = ik1 = ik+1

`k
. As previously, we characterise the bisimulation

classes of this type of BANs.

Lemma 12. The set of ⊕-BACCs of length m and size (n1, . . . , nm) admits one bisimu-
lation class if m− 1 is not a multiple of 3 and two if m− 1 is a multiple of 3.

Proof. (sketch) The proof of Lemma 12 is based on the equivalences presented on Figure
3. These equivalences have to be understood as follows: given a ⊕-BAN such that the left
pattern of an equivalence appears in its interaction graph, then this BAN is equivalent to
the BAN that has the same interaction graph except that the left pattern has been replaced
by the right pattern of the equivalence, no matter what is the number and the type of arcs
going out of the vertices with the outgoing dashed arcs. In other words, Figure 3 presents
a set of interaction graph rewriting rules that produce equivalent networks according to

16

the bisimulation relation. Hence, it is enough to prove that the interaction graph of a BAN
can be rewritten into the other, to prove that the two corresponding BANs are equivalent.

As in the case of ⊕-BAFs, the proof is done in two steps. We first show that the set
of ⊕-BACCs of length m and size (n1, . . . , nm) is divided into two classes: the positive
class and the negative class, that respectively correspond to the set of BACCs whose
interaction graph reduces to a graph where all arcs are positive, and the set of BACCs
whose interaction graph reduces to a graph where all arcs are positive except the arc
(i1n1

, i11) that is negative. This result is shown by induction on the index of the “right
most” negative arc of the BACC, using the equivalences of Figure 3 (from left to right) to
push this negative arc to the left. In a second step, we prove that in the case where m− 1
is not a multiple of 3, the two classes coincide since one can reduce the negative interaction
graph to the positive one, using again a combination of equivalences from Figure 3.

For every class of ⊕-BACCs of a given length and size, we have then studied their
number of fixed points.

Lemma 13. A positive ⊕-BACC of length m and size n has a unique fixed point, 0n, if

(m− 1) 6≡ 0 mod 3 and has two fixed points, 0n and (101)
m−1

3 , if (m− 1) ≡ 0 mod 3.

Lemma 14. A negative ⊕-BACC (of length m ≡ 1 mod 3) has no fixed point.

Similarly to the case of ⊕-BAFs, we can completely characterise the ATG of a ⊕-
BACC N of length m and size n if m− 1 6= 0 mod 3, since in this case there is only one
bisimulation class: GA

N has exactly one unreachable configuration, one unique fixed point,
and one SCC of size 2n − 2.

Conversely, the case where m− 1 is a multiple of 3 is more complex because there are
no easy ways to tell whether a network belongs to the positive or the negative class other
than to compute its reduction graph as this is done in the proof of Lemma 12. Moreover,
the class of the reverse network also depends on the length of each half-cycle in the ⊕-
BACC, so describing each possible cases would be tedious. However, summarising the
results above, we can still state that there is at most two fixed points and two unreachable
configurations in the transition graph of a ⊕-BACC of length m − 1 ≡ 0 mod 3. More
precisely we can say that its transition graph has one of these four forms:

• a SCC of size 2n − 4, two fixed points and two unstable configurations (case N and
NR are from the positive class);

• a SCC of size 2n − 2 and two fixed points (case N is positive and NR is negative);

• a SCC of size 2n − 2 and two unreachable configurations (case N is negative and
NR is positive);

• a SCC of size 2n (case both N and NR are negative).

5 Conclusions and perspectives

Through general results and their application to particular classes of interaction graphs,
the present work launches the description of asymptotic dynamical behaviours of ⊕-BANs
under the asynchronous update mode. By this means, it contributes to improve our
understanding of the wild domain of non-monotonic Boolean automata networks.

17

The algorithmic approach used to explore the transition graphs of the BANs under
study appears as a good strategy when one wants to get an insight of the mechanisms
behind the asymptotic behaviours of some networks. In our case, it emphasises the great
expressiveness of ⊕-BANs and their high level of “(re)activity” (in comparison with ∨-
BANs for example).

The notion of bisimulation also reveals to be a powerful tool for factorising proofs when
it comes to the study of a particular family of BANs. Even though finding a proper set of
interaction graph rewritings may be a bit challenging, it results in a very interesting and
comprehensive tool that highlights which characteristics of the interaction graphs really
matter in the dynamical behaviours of the BANs.

We believe that most of the results we get could be refined or extended to some other
types of (⊕)-BANs. For example it should be possible to allow some arcs between or inside
the cycles of a ⊕-BADC without changing the general shape of its corresponding ATG.
These kind of refinement draw a logical line for further works. Another interesting question
would be directed to the study and comparison of asymptotic behaviours under different
update modes. The algorithms we describe and the ATG we get for strongly connected
⊕-BANs with an induced BADC of size greater than 3 suggest that the addition of k-
synchronism, that is when one allows k automata to update simultaneously, make the set
of unreachable configuration disappear if k is greater than the size of the smallest cycle in
an induced BADC of the network.

I end this report with great thanks to my supervisors, Kévin Perrot and Sylvain Sené,
for their enthusiasm, their availability and the precious advice they gave to me. I also
would like to thank them for giving me the chance to attend to the EJCIM-2015 and to
write my first paper. Finally I would like to thank people from the LIF for the warm
atmosphere of the lab.

References

[1] J. Aracena, A. Richard, and L. Salinas. Maximum number of fixed points in AND-
OR-NOT networks. Journal of Computer and System Sciences, 80:1175–1190, 2014.

[2] J. Demongeot, M. Noual, and S. Sené. Combinatorics of Boolean automata circuits
dynamics. Discrete Applied Mathematics, 160:398–415, 2012.

[3] G. Didier and É. Remy. Relations between gene regulatory networks and cell dynamics
in Boolean models. Discrete Applied Mathematics, 160:2147–2157, 2012.

[4] E. S. El-Mallah and C. J. Colbourn. The complexity of some edge deletion problems.
IEEE Transactions on Circuits and Systems, 35:354–362, 1988.

[5] M. Gadouleau, A. Richard, and É. Fanchon. Reduction and fixed points of Boolean
networks and linear network coding solvability. 2014. arXiv:1412.5310.

[6] M. Gadouleau, A. Richard, and S. Riis. Fixed points of Boolean networks, guessing
graphs, and coding theory. 2014. arXiv:1409.6144.

[7] C. Georgescu, W. J. R. Longabaugh, D. D. Scripture-Adams, E. David-Fung, M. A.
Yui, M. A. Zarnegar, H. Bolouri, and E. V. Rothenberg. A gene regulatory network
armature for T lymphocyte specification. Proceedings of the National Academy of
Sciences, 105:20100–20105, 2008.

18

[8] E. Goles and S. Mart́ınez. Neural and automata networks: dynamical behavior and
applications, volume 58 of Mathematics and Its Applications. Kluwer Academic Pub-
lishers, 1990.

[9] J. J. Hopfield. Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences of the USA,
79:2554–2558, 1982.

[10] J. J. Hopfield. Neurons with graded response have collective computational properties
like those of two-state neurons. Proceedings of the National Academy of Sciences of
the USA, 81:3088–3092, 1984.

[11] A. S. Jarrah, R. Laubenbacher, and A. Veliz-Cuba. The dynamics of conjunctive and
disjunctive Boolean network models. Bulletin of Mathematical Biology, 72:1425–1447,
2010.

[12] S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology, 22:437–467, 1969.

[13] P. Koiran. Puissance de calcul des réseaux de neurones artificiel. PhD thesis, École
normale supérieure de Lyon, 1993.

[14] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Journal of Mathematical Biophysics, 5:115–133, 1943.

[15] T. Melliti, M. Noual, D. Regnault, S. Sené, and J. Sobieraj. Asynchronous dynam-
ics of Boolean automata double-cycles. In Proceedings of UCNC, 2015. In press,
arXiv:1310.5747.

[16] T. Melliti, D. Regrault, A. Richard, and S. Sené. On the convergence of Boolean
automata networks without negative cycles. In Proceedings of Automata, volume
LNCS 8155, pages 124–138. Springer, 2013.

[17] L. Mendoza, D. Thieffry, and E. R. Alvarez-Buylla. Genetic control of flower mor-
phogenesis in arabidopsis thaliana: a logical analysis. Bioinformatics, 15:593–606,
1999.

[18] M. Noual. Synchronism vs asynchronism in boolean networks. arXiv:1104.4039, 2011.

[19] M. Noual. Updating automata networks. PhD thesis, école normale supérieure de
Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00726560.

[20] M. Noual, D. Regnault, and S. Sené. About non-monotony in Boolean automata
networks. Theoretical Computer Science, 504:12–25, 2012.

[21] M. Noual, D. Regnault, and S. Sené. Boolean networks synchronism sensitivity and
XOR circulant networks convergence time. In Full Papers Proceedings of Automata’12,
volume 90 of Electronic Proceedings in Theoretical Computer Science, pages 37–52.
Open Publishing Association, 2012.

[22] P. Orponen. Computing with truly asynchronous threshold logic networks . Theoret-
ical Computer Science, 174:123–136, 1997.

19

http://tel.archives-ouvertes.fr/tel-00726560

[23] E. Remy, B. Mossé, C. Chaouiya, and D Thieffry. A description of dynamical graphs
associated to elementary regulatory circuits. Bioinformatics, 19:172–178, 2003.

[24] A. Richard. Negative circuits and sustained oscillations in asynchronous automata
networks. Advances in Applied Mathematics, 44:378–392, 2010.

[25] A. Richard and J.-P. Comet. Necessary conditions for multistationarity in discrete
dynamical systems. Discrete Applied Mathematics, 155:2403–2413, 2007.

[26] F. Robert. Discrete iterations: a metric study, volume 6 of Springer Series in Com-
putational Mathematics. Springer, 1986.

[27] D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks–ii.
immunity control in bacteriophage lambda. Bulletin of mathematical biology, 57:277–
97, 1995.

[28] R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical
Biology, 42:563–585, 1973.

[29] R. Thomas. Regulatory networks seen as asynchronous automata: a logical descrip-
tion. Journal of Theoretical Biology, 1991.

20

6 Appendix

This Appendix compiles the details of the proofs sketched in the core of the document.
Lemmas and proofs are presented in the same order.

Lemma 3 Two BANs N = {fi}ni=1, N ′ = {f ′i}ni=1 bisimulate each other if there exists a
bijection ϕ : {1, . . . , n} → {1, . . . , n} and a set {φi : B→ B}ni=1 of (non constant) Boolean
functions such that for all automata i, φi ∈ {id, neg}, and for all configurations x ∈ Bn,
φi(fi(x)) = f ′ϕ(i)(φ(x)) where φ(x) is defined componentwise by φ(x)i = φϕ−1(i)(xϕ−1(i)).

Proof. This is almost a rephrasing of the definition: Suppose that ϕ and {φi : B→ B}ni=1

satisfy the conditions above, then

1. The map φ is a bijection since it is defined componentwise by a set of bijective
functions (φi ∈ {id, neg},∀i).

2. GN1 and GN2 are isomorphic by φ since

x
W−→ y ∈ GN1 ⇔ yi =

{
fi(x) if i ∈W
yi otherwise

, ∀i ∈ {1, . . . , n}

⇔ φi(yi) =

{
φi(fi(x)) if i ∈W
φi(yi) otherwise

, ∀i ∈ {1, . . . , n}

⇔ φi(yi) =

{
gϕ(i)(φ(x)) if i ∈W
φi(yi) otherwise

, ∀i ∈ {1, . . . , n}

⇔ φ(y)ϕ(i) =

{
gϕ(i)(φ(x)) if ϕ(i) ∈ ϕ(W)

φ(y)ϕ(i) otherwise
, ∀i ∈ {1, . . . , n}

⇔ φ(y)j =

{
gj(φ(x)) if j ∈ ϕ(W)
φ(y)j otherwise

, ∀j ∈ {1, . . . , n}

⇔ φ(x)
ϕ(W)−→ φ(y) ∈ GN2

Lemma 4 The set of ⊕-BADC of size (n1, n2) admits exactly one bisimulation class.

Proof. This is induced by the fact that the positive ⊕-BADC representative bisimulate
both the negative and the mixed ⊕-BADC representatives: In the first case, the equality
x11⊕ x21 = x11⊕ x21 implies that positive and negative ⊕-BADCs are trivially equivalent; in
the second case the bijection φ(x) = xV over the set of configuration satisfies the condition
from definition 1, proving that positive ⊕-BADCs and mixed ⊕-BADCs bismulate each
other.

To prove the second statement we need to show that φ(FW (x)) = F ′W (φ(x)), ∀x ∈ Bn,
where F denotes the global functions of the positive ⊕-BADC and F ′ the ones of the
negative ⊕-BADC. We check that it is the case for each component i:

• if i /∈W , then φ(FW (x))i = FW (x)i = xi = φ(x)i = F ′W (φ(x))i

• if i = o ∈ W , φ(FW (x))i = FW (x)i = xn1 ⊕ xn2 = φ(x)n1 ⊕ φ(x)n2 = φ(x)n1 ⊕
φ(x)n2 = F ′W (φ(x))i

• if o 6= ikj ∈ W , φ(FW (x))kj = FW (x)kj = F k
j (x) = xkj−1 = φ(x)kj−1 = f ′kj (φ(x)) =

FW (φ(x))kj

21

00 01

10 11

{1}|{2}

{1}

{2}

{2}{1}

{1}

{2}

000 001

010 011

100 101

110 111

{1}|{2}|{3}

{2}

{3}
{1}

{3}

{2}
{1}

{1}

{2}|{3}

{1}

{2}

{3}

{1}

{3} {2}

{1}|{2} {3}

{1}|{3}

{2}

Figure 4: The ATGs of the positive BADCs of size (1, 2) (left) and (2, 2) (right)

Lemma 8 In a ⊕-BADC, every configuration which is not unreachable can be reached
from any other (unstable) configuration in O(n2) (and the bound is tight).

Proof. First let us recall that all ⊕-BADCs of same size (n1, n2) are equivalent with respect
to bisimulation. This means in particular that their ATGs are isomorphic and so proving
that Lemma 8 holds for one ⊕-BADC of each size is enough to prove Lemma 8 completely.
Hence in the following we only deal with positive ⊕-BADC. However, one will notice that
the proof below is easy to adjust to any ⊕-BADC.

The proof presents an algorithm that explains how to walk from one configuration to
an other in the ATG of any positive ⊕-BADC that has at least one cycle of size greater
than 3. The algorithm can be tuned to deal with BADCs where n1 and n2 are both less
than or equal to 2 but this multiplies the number of cases that need to be considered
and masks the general dynamics. So for the special BADCs of size (n1, n2) = (1, 2) (or
vice-versa) and (n1, n2) = (2, 2) we prefer to prove Lemma 8 by looking directly at the
form of their ATG. These ATGs are drawn in Figure 4 and they all satisfy Lemma 8 as
desired.

Now, without loss of generality we assume that n1 ≥ 3.

22

1. From any configuration with at least one automata in state 1 (i.e. unstable in the
case of positive ⊕-BADC) one can reach a configuration x where xo = fo(x) and

xi = fi(x) for all i 6= o (i.e. xo = xn1 ⊕ xn2 and xkj = xkj−1 for all ikj 6= o). This is
possible for example using the following steps :

• In a linear number of updates, set xn1 to 1 and xn2 to 0: Let ikj be the automaton
in state 1 that is the closest to in1 and update every automata on the path from
ikj to in1 . If k = 1 then this simply propagates the state 1 of automaton j on

every automata up to automaton n1 in C1 ; if k = 2 then the state 1 of i2j
propagates from j to n2 in C2 then from 1 to n1 in C1. The more subtle point
is that by the time o = i11 is updated, we have xn1 = 0 and xn2 = 1 which
gives fo(x) = 1 as claimed. Hence these first updates set in1 to 1. To finish, if
xn2 6= 0 (hence xn2 = 1) update all the automata of C2 from 1 (i.e. o) to n2.

• In a quadratic number of updates, set C1 into the alternating configuration such
that xn1 = 1, i.e. to 11(01)n1/2−1 if n1 is even and to 0(01)(n1−1)/2 if n1 is odd:

for j = n1 to 2 do: update the automata of C1 from 1 to j then the ones of C2
from 2 to n2.

The invariant is the following : after each iteration, x1[n1, j] = (10)(n1−j)/2 and

xn2 = x1j = xo (hence fo(x) = xn1 ⊕ xn2 = 1 ⊕ x1j = x1j). Indeed we start
with xn1 = 1 and xn2 = 0 so by the end of the first iteration xn1 = xn2 =
xo = 1 ⊕ 0 = 1. Then for the jth iteration, since we start with x1[n1, j + 1] =

(10)
n1−j+1

2 and with fo(x) = x1j+1 we end up with x1j = xn2 = xo = x1j+1 and

so x1[n1, j] = (10)(n1−j)/2.

• Similarly force C2 to alternate in a quadratic number of updates (while preserv-
ing the alternating configuration in C1):
for j = n2 − 1 to 2 do: update the automata of C2 from 1 to j then the one of
C1 from n1 to 2.

The invariant is: after each iteration, xn2 is unchanged, x12 = x2j = xo, fo(x) 6=
xo and x1[2, n2] and x2[n2, j] are both alternating. The first two statements of
this invariant are direct translation of the instructions. The last two require
the invariant hypotheses. By the previous point the invariant is satisfied before
entering the loop. Hence, right after its update xo 6= x12 and xo 6= x2j+1. So after

its updtate x2j = xo 6= x2j+1 (hence x2[n2, j] is alternating), and updating C1 in
reverse order leaves it alternating. This also restores the fact that xo 6= fo(x)
since the state of in1 has been switched with the update of C1 while the state
of in2 has been left unchanged.

• By the end of the two previous steps the system is in a configuration such that

fkj (x) = xkj for all automata ikj but i12 and i22. The last thing to do to reach a
configuration where fi(x) = xi for all automata i but o, is thus to update C1
and C2 in reverse order (from n1, respectively n2, to 2) and then update the
central automaton o. This takes a linear number of updates.

Hence, the whole sequence takes a quadratic number of updates and it results in one
of the following configurations:

· (0(10)
n1−1

2 , 0(10)
n2−1

2) if n1 and n2 are odd,

· ((10)
n1
2 , 1(01)

n2−1
2) if n1 is even and n2 is odd,

23

· ((01)
n1
2 , (01)

n2
2) if n1 and n2 are even,

· (1(01)
n1−1

2 , (10)
n2
2) if n1 is odd and n2 is even.

2. Let x denote the resulting configuration, then any configuration x′ with at least
one automaton ikj in stable state (i.e. such that x′kj = fkj (x′)) is reachable from x.

Indeed, xo = fo(x) and xi = fi(x) for all i 6= o, so in a linear number of updates
we can move from the configuration x to the configuration x̂ where x̂o = x′o and
x̂i = fi(x̂) for all i /∈ {ijk, o}. This is achieved by following instruction: if ijk 6= o and
x′o 6= xo, update o and the automata from nk to j in Ck.

Then, reaching x′ from x̂ is straightforward: one simply needs to switch the state of
the automata when necessary:

• for j = n1 to 2 (in C1): update the automaton i1j if x̂1j 6= x′1j ;

• for j = n2 to 2 (in C2): update the automaton i2j if x̂2j 6= x′2j ;

• update the automaton ijk.

These updates are efficient since for all i /∈ {ijk, o}, if x̂i 6= x′i then x′i = xi = fi(x̂),
which is the value returned by the update of i. Then, by definition of x̂, automaton
o already has the right state. And, finally, by definition of ijk, x′kj = fkj (x′), which is
the value returned by fi after every other automaton has been updated.

The second sequence takes a linear number of steps, so the whole sequence remains
quadratic.This bound is tight since going from the configuration x = (10n1−1, 10n2−1)
to a configuration x′ where x′i = fi(x′) for all automata i 6= o (for example the

configuration x′ = (0(10)
n1−1

2 , 0(01)
n2−1

2 if m and n are odd) requires at least∑n1
j=1 j +

∑n2
j=1 j = n1(n1−1)

2 + n2(n2−1)
2 updates, which is in θ((n1 + n2)

2).

Remark. Note that if we allow synchronous transitions, then every configuration is reach-
able from any unstable configuration. By the lemma above this is immediate if the target
configuration is not unreachable, but the algorithm also tells us that if x is unreachable,
one can still reach the configuration x′ = xCi for |Ci| > 1 (since in that case the state of
the first automaton of C1−i is stable). Then for all automaton j of Ci, fj(x′) = x′j = xj ,
so the synchronous update of Ci changes the configuration of the system from x′ to x.

Lemma 9 In a ⊕-BAN N , if i and j are two automata such that there is a path from i
to j, then for any configuration x such that i is unstable in x there exists a configuration
x′ such that j is unstable (hence can be switched) in x′ that is reachable from x.

Proof. This result is based on the fact that, in a ⊕-BAN, making a stable automaton
become unstable can be achieved by only switching the state of one of its incoming neigh-
bours. Indeed, for an automaton i stable in x we have xi = fi(x) (=

⊕
j∈Ii σj(xj)),

so switching the state of one of its neighbours k ∈ Ii \ {i} leads to a configuration

x′ = xk such that x′i = xi = fi(x) =
⊕

j∈Ii σj(xj) = σk(xk) ⊕
(⊕

j∈Ii\{k} σj(xj)
)

=

σk(x′k)⊕
(⊕

j∈Ii\{k} σj(x
′
j)
)

=
⊕

j∈Ii σj(x
′
j) = fi(x′), that is, i is unstable in x′.

So let i and j be two automata as described in Lemma 9, let p = i0, i1, . . . , ik be a
shortest path (in the interaction graph of N) from i = i0 to j = ik and let i` denotes
the last automaton in p that is unstable. Then updating along p from i` to ik−1 (so that

24

nothing happens if ` = k, i.e. if j is unstable) will lead to a configuration where j is
unstable. This is quite immediate from the remark above. The only subtlety is the choice
of the path which must ensure that the update of one automaton only affects the next
automaton on the path but not the ones after it. This is true in particular if one take p
to be a shortest path since this ensures that for all automata i`,i`′ ∈ p, there are no arcs
from i` to i`′ if `+ 1 < `′.

Theorem 3 In a strongly connected ⊕-BAN with an induced BADC of size greater than
3, any configuration that is not unreachable can be reached from any configuration which
is not stable in a quadratic number of asynchronous updates

Proof. Let D be an induced BADC of size greater than 3 in the BAN N and let x and x′

respectively be the initial configuration and the target configuration described in Theorem
3. The configuration x is not stable so, by Lemma 9, it is possible to go from x to a
configuration y where one automaton of D, hence D, is not stable. Then, using Lemmas
9 and 8, we claim that it is possible to set the state of every automata i outside of D to
its value in x′ while keeping D in an unstable configuration.

The idea is as follows: let i be an automaton that is not in D and let p = i0i1 . . . ik
be a shortest path (in the interaction graph of N) from D to ik = i. Then, applying the
algorithm from Lemma 8, we know how to reach a configuration where i0 is unstable and
so, using the algorithm from Lemma 9, we know how to reach a configuration where i is
unstable. From this configuration we can set the state of i to x′i by updating i if necessary.
So, if we can guarantee that this process preserves the instability in D, then we can use
it repetitively on the automata outside of D to reach a configuration where D is unstable
and where all automata outside of D are in the state specified by x′. Once this is done
we only need to set D to its right value to reach x′. Since D is unstable, this can be
done by using the algorithm from Lemma 8, assuming that the restriction of x′ to D is
not unreachable for D (D is viewed as a ⊕-BADC whose local transition functions are
fixed by its surrounding environment in x′). If this is not the case we use the same kind
of trick that what is done in the second step of the proof of Lemma 8 when the stable
state of the target configuration is not the central node o: if i is an automaton of N such

that fi(x′
i
) = x′i, and if p = i0 . . . ik is a shortest path from i = i0 to D, then we first

reach the configuration x̂ such that (i) x̂j = x′j if j /∈ p, (ii) ik(∈ B) is stable in x̂ (so the
restriction of x̂ to D is reachable for D), and (iii) the state values of the automata in p are
“alternating”, i.e. if we set up the state of the automata of p to their value in x′ from ik to
i1 then every time an automaton i` is about to be set up, its predecessor in p must be in
an unstable state so as to enable ` to switch state if necessary. With such conditions it is
easy to go from x̂ to x′: one only needs to update p back up as described in the previous
sentence; then if i0 is not already in state x′i0 , it can still be switched to the right state

since fi(x′
i
) = x′i.

The configuration x̂ described above can be computed inductively by taking the kth

iteration, x̂k, of: (i) x̂0 = x′, (ii) x̂`j = y`−1j if j /∈ {i`−1, i`}, x̂`i` = x′`, and x̂`i`−1
is the

solution of the equation fi`−1
(x̂`) = x̂`i`−1.

Actually, setting the automata outside of D to their state in x′ cannot be done in any
order. Indeed, the algorithm from Lemma 9 often requires to switch the state of some
automata outside of D. Hence we need to guarantee that the automata that have already
been treated are not switched again while processing the other automata. A way to ensure
that is to compute a breadth first search tree of root D and to treat the automata in the

25

order given by the tree from the leaves to the root, using the branches of the tree as the
paths from D to the automata to be treated. An example of such ordering is given in the
picture below.

BADC

6

11

14

10

5

4

3

2

1

13

12

9

8

7

Finally, to conclude the proof above, we need to precise a way of using the algorithm
from Lemma 9 that ensures that the instability of D as well as the state of the automata
that are not in D or on the path from D to the automaton to be set up, are preserved by the
updates. So let x be the starting configuration, let p be the (shortest) path from D to the
automata to be set up, and let j 6= i0 be an influencer of i0 in D (i.e. j ∈ (B \ {i0})∩ Ii0).
Then, since D is supposed to be unstable in x, one can use Lemma 8 to put the system in
a configuration y where i0 is unstable, and where yj is such that yj = fj(yi1) if there is an

arc from i1 to i0, and yj = fj(y{i0,i1}) if there are no arcs from i1 to i0. This is possible
since D is of size at least 3, and so one can ask a third automaton of D (different from
i0 and j) to be stable in y, which makes y reachable. The algorithm does not modify the
state of the automata outside of D.
From there one can start applying Lemma 9: let i` be the last automaton in p that is
unstable, then, if ` ≤ 1, start updating p from i` to i1. This leaves N in a configuration
y′ such that D is unstable. Indeed,

• either nothing happened (` > 1) and so D is still unstable (because i0 is unstable in
y for example).

• or only i1 has been updated and so: (i) if there is an arc between i1 and i0, then

y′j = yj = fj(yi1) = fj(y′) and so j is unstable in y′; (ii) if there are no arcs from i1
to i0 then the neighbourhood of i0 has not changed so i0 is still unstable in y′.

• or i0 and i1 have been updated and so: (i) if i0 has no self loop and there is an arc
from i1 to i0 then i0 is still unstable (because it has changed and an odd number
of its incoming neighbours have changed too); (ii) if there are no arcs from i1 to i0

then y′j = yj = fj(y{i0,i1}) = fj(y′) and so j is unstable in y′; (iii) if i0 has a self loop
then i0 is not an influencer of j (because D is an induced BADC of size 3 and j has
been chosen to be the predecessor of i0 different from i0) so fj(y

{i1}) = fj(y
{i0,i1}),

so y′j = fj(y{i0,i1}) which means as previously that j is unstable in y′.

Now, let `′ = max(2, `) –`′ is the last automaton of p to be unstable in y′– then, since
D is unstable in y′, we can use Lemma 8 again to reach a configuration y′′ such that

y′′i0 = fi0(y′
{i`′ ,...,in−1}

) and y′′i = y′i for all automata i that are not in D. Moreover, since
p was chosen to be a shortest path, no automaton in D influences the automata of index

26

greater than 2 in p. So the last automaton of p that is unstable y′′ is i`′ too. Hence we
can finish running the algorithm of Lemma 9 (by updating the automata along p from i`′

to in−1) and be sure that this leads to a configuration where in−1 is unstable. We also

know that in this configuration D is unstable since i0 has state fi0(y′
{i`′ ,...,in−1}

). This last
algorithm concludes the proof of Theorem 3.

Lemma 12 The set of ⊕-BACC of length m and size (n1, . . . , nm) admits one bisimulation
class if m− 1 is not a multiple of 3 and two if m− 1 is a multiple of 3.

Proof. We give here a “pictorial” proof of Lemma 12 using the equivalences presented in
Figure 3. These equivalences have to be understood as follows: given a ⊕-BAN such
that the left pattern of an equivalence appears in its interaction graph, then this BAN is
equivalent to the BAN that has the same interaction graph except that the left pattern has
been replaced by the right pattern of the equivalence, no matter what is the number and
the type of arcs going out of the vertices with the outgoing dashed arcs. In other words
Figure 3 presents a set of interaction graph rewritings that produce equivalent networks
according to the bisimulation relation. Hence it is enough to prove that the interaction
graph of a BAN can be rewritten into an other one, to prove that the two corresponding
BANs are equivalent.

The equivalences (1) and (2) only translate the well known identities b1⊕ b2 = b1⊕ b2
and b1⊕b2 = b1⊕b2 for any Boolean values b1 and b2. The proofs of the other equivalences
are a bit longer but do not present any difficulties. Let us present one of them (the third
one):

Proof of Equivalence (3) in Figure 3. Let N = {fi} and N ′ = {f ′} be two ⊕-BAN whose
interaction graphs that only differ by the pattern shown in Equivalence (3). We denote
by C1, C2 (respectively o1,o2) the two cycles (respectively intersection automata) of the
pattern and by Cu2 the upper helf cycle of C2. We are going to prove that N bisimulates
N ′ by using the conditions from Lemma 3: we take ϕ to be the identity over the set of
automata and φi to be the Boolean identity if automaton i does not belong to C1, Cu2 or {o1}
and the Boolean negation otherwise. Then, we need to check that φi(fi(x)) = f ′i(φi(x))
for all automata i in the network. This is immediate for all automata that do not belong
to C1 ∪ Cu2 ∪ {o1, o2} since we use the identity everywhere. Then, if i ∈ C1 ∪ Cu2 , we also
have φi(fi(x)) = φi(pred(i)) = pred(i) = φpred(i)(pred(i)) = f ′i(φ(x)). So it only remains
to check that the equality holds for the automata o1 and o2. This is the case since :

1. φo1(fo1(x)) = φo1(pred1(o1)⊕ pred2(o1)) = pred1(o1)⊕ pred2(o1)
= φpred1(o1)(pred1(o1))⊕ φpred2(o1)(pred2(o1)) = f ′o1(φ(x)), and

2. φo2(fo2(x)) = φo2(pred1(o2)⊕ pred2(o2)) = pred1(o2)⊕ pred2(o2)
= φpred1(o2)(pred1(o2))⊕ φpred2(o2)(pred2(o2)) = f ′o2(φ(x)).

Given the set of equivalences of Figure 3, we prove Lemma 12 in two steps: first we
show that the interaction graph of any ⊕-BACC can be rewritten into an interaction graph
with at most one negative sign on the arc from i1n1

to o1 = i11. Then we prove that, in the
case where m−1 is not a multiple of 3, this negative can be removed by an other sequence
of rewrites. The first point implies that for any m and n, the set of ⊕-BACCs of length
m and size n is made of at most two bisimulation classes: the positive class, that contains

27

the BACCs whose interaction graph reduces to a graph where all arcs are positive, and
the negative class, that contains the BACCs whose interaction graph reduces to a graph
where all arcs are positive except the arc (i1n1

, i11) which is negative. The second point says
that, in fact, this two classes are only one if m − 1 is not a multiple of 3, since one can
reduce the negative interaction graph to the positive one.

Proof of the first point. As usually we focus on the canonical BAN, since this already
reduces the number of cases to consider. Then using the equivalences (1) and (2) from
Figure 3 we can reduce the interaction graph of any ⊕-BACC to a graph where all negative
paths are “on the top” that is the only negative arcs allowed are the ones between the
intersection points and there left predecessor, (iknk

, ok).
Then, by induction on the position of the “right most” negative arc, we use the equiv-

alences (5), (6), (7) and (8) to push this negative arc to the left, hence proving that any
⊕-BACC is bisimulable by a ⊕-BACC of same structure with at most two negative arcs
on its first two cycles.

Finally the equivalences (3) and (4) reduce the four base cases (++,+−,−+,−−) to
two: the positive case (++) and the negative case (−+).

Proof of the second point. Consider the interaction graph of a negative ⊕-BACC of length
m. By Equivalence (2), this network is bisimulated by the ⊕-BACC of same structure
with only one negative path on the first or on the second bottom half-cycle. Then, viewing
the BACC upside-down, we can reuse the equivalences (6) and (8) alternatively so as to
push this negative path to the right. Every time we apply the equivalences (4) and (6)
successively the negative arc is pushed 3 half-cycles to the right. Finally Equivalence (8)
tells us that if the negative arc is pushed to the second to last bottom half-cycle then the
⊕-BACC is in the positive class. This is possible if m − 1 ≡ 1 mod (3) or if m − 2 ≡ 1
mod (3) (i.e. m − 1 ≡ 2 mod (3)), depending on if we start from the first or from the
second bottom half-cycle respectively. In other words, this is the case if m − 1 is not a
multiple of 3.

Note that the equivalences presented in Figure 3 are exhaustive, i.e. any other equiv-
alences can be deduced from these eight equivalences So, the argument above also proves
that it is impossible to bisimulate a positive ⊕-BACC with a negative ⊕-BACC if m− 1
is a multiple of 3. In other words, if m−1 ≡ 0 mod (3) there are always two bisimulation
classes, the positive one and the negative one.

Lemma 13 A positive ⊕-BACC of length m and size n has a unique fixed point, 0n, if

m − 1 is not a multiple of 3, and has two fixed points, 0n and (101)
m−1

3 , if (m − 1) ≡ 0
mod (3).

Lemma 13. In a stable configuration every nodes of a given nude path have the same state,
hence from now on we focus on determining the states of the intersection automata ok.
As this is done in Section 4.1 for ⊕-BAF, we determined the fixed points of a ⊕-BACC
by fixing the state of one of its automata and propagating the information induced until
having to make a new choice or reaching a fixed point or a contradiction. Here, we start
by fixing the “left most” automaton and by induction on the two possible cases (xo1 = 0
and xo1 = 1) we show that this completely determines the state of the other automata if
we want to get a fixed point.

28

1. if xo1 = 0, then o1 is stable if and only if xo2 = 0 and, recursively, for all 1 < k ≤ m−2
, if xok−1

= 0 and xok = 0 then ok is stable if and only if xok+1
= 0. Hence 0m is the

unique fixed point such that x0 = 0.

2. Similarly, if xo1 = 1 then o1 is stable if and only if xo2 = 0. Then, we have three
induction cases for all 1 < k ≤ m − 2: (1) if xok−1

= 1 and xok = 0 then ok is
stable if and only if xok+1

= 1 ; (2) if xok−1
= 0 and xok = 1 then ok is stable if

and only if xok+1
= 1; (3) if xok−1

= 1 and xok = 1 then ok is stable if and only if
xok+1

= 0. Hence the only way for the last intersection automaton, om−1, to be stable
when xo1 = 1 is that (m − 1) ≡ 0 mod (3), and the corresponding configuration is
(101)(m−1)/3.

The proof above also shows the following:
Lemma 14 A negative ⊕-BACC (of length m ≡ 1 mod (3)) has no fixed points.

Proof. Suppose xo1 = 0 then o1 cannot be stable no matter what is the state of o2 in
the configuration. Hence, if x is a stable configuration x1 must be 1. This forces xo2 to
be 1 too (otherwise the automaton o1 is not stable). From this point, finding the end of
the stable configuration amounts to finding a stable configuration starting with a 1 for a
⊕-BACC of size m−1. , which is impossible from the lemma above (Lemma 13). So there
are no stable configurations for the negative ⊕-BACC of length m ≡ 1 mod (3).

29

	Introduction
	Background
	Contribution

	Definitions, notations and some basic properties
	Static definition of a BAN
	Dynamics of a BAN and the specific asynchronous mode
	Bisimulation equivalence relation

	General results on -BANs
	Preliminary results on -BADC
	Proof of Theorem 3

	Study of some specific -BANs
	-BA Flowers
	-BAC Chains

	Conclusions and perspectives
	Appendix

