Enriched Concurrent Games:
Witnesses for Proofs and Resource Analysis

Aurore Alcolei

PhD defense — October, 17 2019

Finding our way in semantics
v Lyon, Rhéne, Departemental constituency of

9 Bologna, BO, Emilia-Romagna, Italy

Bicycle (GraphHopper) v “

Dtiechfenstein
Schweiz/ i ens
“Suisse/Svizzeral

1. Continue

2. Tumn right onto Route de la Gagere

3. Turn left onto Route de la Gagere

5. Keep left

6. Turn left onto Route des Collonges

7. Turni sharp right onto Route de la

+
P
At
P 4 Tumright
T
A
N

> N Fenze
' (R
o \
i ; Gare

=l

8. At roundabout, take exit 2 onto Route
de la Gare

9. At roundabout, take exit 3 onto Route
de la Gare

Finding our way in semantics

b *% &+ meplacedl](",", " ",
& % e a.5plit(" "); #

| W & = array_from_strj L
N i) i), ¢ o S ng($(

RO)); 1 (¢ < 7 1 e Oy frwm,

e nrder 5
: Type,

133:!,?3)\1(33 N -3aiaravaa

Proof

prove all.

{* Let & : Type be arbitrary bt fixed. It ressins to show

vPQ:

Gaia pay v Gah Qal=3a:h Pavaa

prove all.

(*Let P : A~ Prop be arbitrary but fixed. It resains to show
B VoA~ prop,

(3a:A Pav(@a:AQa-3a:A Paviar)

prove all

+ Let 0 : A < Prop be arbitrary but fixed. It ressing to shov

(3a:A Pav@a:AQa)-3a:APave

prove_imp.

(e G I T AR BT et
toshow3a: A PavaQar)
use_or
(+ For this it suffices to show that we can show3a : A, Pa v Q¢
under the assunption 3 a : A, P a and that we can show

APV 0aunder the assumption 3 2 A, 0 a)

(*Let us first assure 3a : A, Paandshow3a: A, PavQa®)
use_ex H.

(* Tt suffices to show 3 a : A, P a v 0 for an arbitrary but fixed
a: Awith P a%)

prove_ex a.

Finding our way in semantics

2" % oo replacelll(",", " ", a); g =
o “% e 2.5 ,("".\;():‘ »

" & = array -
ru-‘ ""‘N). ":m string($(

e l); 15 (cse un:qug(,,.,.” from,_

e ¢), thi

le a[b] 8

Theoren example first nrder 5
Ty

s A, R e e ERTmn
roof .

prove all
{+ Lt &.: Type be arbitrary but fixed. It resains to show
PQ:A-
o h P oy (3atA 08 <3a:A Pavoan
prove all.
B {* Let P : A = Prop be arbitrary but fixed. It ressins to show
VO:A-
G Py @a e ga =33 a Pavaa
prove all
* L

Prop be arbitrary but fixed. It remains to show
iA Qa)-3a:

. 0 a) be assumed. It remains

(+ For this it suffices to show that we can show3a : A, Pa v Q¢
under the assunption 3 a : A, P a and that we can show
APV 0aunder the assumption 3 2 A, 0 a4)

(+Let us first assune 32 : A, Paandshow3a: A, PavQa®)
use_ex H.

(+ Tt suffices to show 3 a : A, Pa v Q for an arbitrary but fixed
a: Awith P ar)

prove_ex a.

Denotational semantics Operational semantics

Semantics of functional programs

P = fun x— 4xx

What does P compute?

Denotational semantics.

[P1=
N

Operational semantics.

N

P2
4n

— (fun x — 4% x) 2
— (4%2)

8

U

Semantics of functional programs

P = fun x— 4xx

What does P compute?

Denotational semantics. . .
Operational semantics.

Pl =
N —- N P2 = (funx—4xx)2
n ~ 4n — (4%2)
— 8

P2y 8

Semantics of functional programs

twice = fun f — fun x — f (f x)
double = funy—y+y
P = twice double

What does P compute?

Denotational semantics.

[Pl =
N —- N P2
n +— 4n

Operational semantics.

(fun f — fun x — f (f x)) double 2
(fun x — double (double x)) 2
double (double 2)

(fun y — y + y) (double 2)

(double 2) + (double 2)

(fun y — y + y 2) + (double 2)
(2+2) + (double 2)
C+2)+((funy—y+y)2)
(2+2)+(2+2)

8

L limlld

Semantics of functional programs

twice = fun f — fun x — f (f x)
double = funy—y+y
P = twice double

What does P compute?

Denotational semantics.

Pl =
N —- N P2
n +— 4n

Operational semantics.

(fun f — fun x — f (f x)) double 2
(fun x — double (double x)) 2
double (double 2)

(fun y — y + y) (double 2)

(double 2) + (double 2)

(fun y — y +y 2) + (double 2)
(2+2) + (double 2)

C+2)+ ((funy—y+y)2)
2+2)+(2+2)

8

@ compositionality:
[P] = [twice] o [double]

@ invariant of computation:

Lemnmlmlld

Pl viff [P] = [v]

Curry-Howard isomorphism

Type system

MNx:AFP(x):B r’EP:A—-B THFM:A
Mx:AFx:A I (fun x— P(x)): A= B r-pPM:B
1
INx:Ak P(x):B ™

N (funx— P(x)):A—=B THEM:A
Ik (fun x — P(x)) M :B

Curry-Howard isomorphism

Deduction system

Mo Ar B -7 A-sB TH
- A A TF A— B - B
1
ro Ak B ™
e AsB TH . A
re

~» Computational meaning of proofs: proofs as programs/functions.

Semantics of programs and proofs

Denotational models

f:A— B

fun / LJ

Programs / Proofs

Semantics of programs and proofs

Denotational models

oc:A—+B RCAxB
f:A— B
while jump LL vX,3X
rand(0,1
(©.1) fun / LJ VoA
newref || Vx, 3x LK

Programs / Proofs

Semantics of programs and proofs
Denotational models

Concurrent

,f\ v Games (CG)

IPA
newref r in
Ir H r := true

Programs / Proofs

[Mel05] Melligs. Asynchronous games
[RW11] Rideau and Winskel. Concurrent strategies

Semantics of programs and proofs

Denotational models

q
. Aﬁ/‘ 3 3
AW CG 7
f ok \ v
\\}éf
IPA LKy
newref r in FD@VDL) DLIVDE) .
Ir H r := true =) VID(y) Bx¥y SPEIWVIDE) a,,hx ;;.V\;,I

F 3xVy =D(x) V D(y), 3xVy —=D(x) V D(y)
= 3IxVy —=D(x) V D(y)

CONTRACTION

Programs / Proofs

[Mel05] Melligs. Asynchronous games
[RW11] Rideau and Winskel. Concurrent strategies

Semantics of programs and proofs

Denotational models

4 ’ Fo=e
D! ¥-CG ¢

ok =Y v

Y

g~

IPA LKy

newref r in F D9V, bHIVOE)
Iz H F o= S F —D(e) v D(y), 3xVy, -D() VD(y) __ nre y\;’
F 3xVy =D(x) V D(y), 3xVy —=D(x) V D(y) g =ov

= 3IxVy —=D(x) V D(y)

CONTRACTION

Programs / Proofs

[Mel05] Melligs. Asynchronous games
[RW11] Rideau and Winskel. Concurrent strategies

Semantics of programs and proofs

Denotational models

qO
rzﬁ F= ¥
i\ ‘51 T-CG 47 /q
f ok VY2

S g

IPA LKy

newref r in F D9V, bHIVOE)
Iz H F o= S F —D(e) v D(y), 3xVy, -D() VD(y) __ nre y\;’
F 3xVy =D(x) V D(y), 3xVy —=D(x) V D(y) g =ov

= 3IxVy —=D(x) V D(y)

CONTRACTION

Programs / Proofs

[Mel05] Melligs. Asynchronous games
[RW11] Rideau and Winskel. Concurrent strategies

Semantics of programs and proofs

Denotational models

q
,24 Fo=e
W R-CG 4 al

[ok’ Ve 2

R-1PA newref r in LKy
wait(2) || wait(1) F D@ VDL, DOVOE)
Iy r— i FD(e) v D(y). 3x¥y, ~D) VD)
I . X = e,V
. F 3xVy =D(x) V D(y), 3xVy —=D(x) V D(y) o rracTION
wait(2) F 3x¥y —D(x) V D(y) "

Programs / Proofs

[Mel05] Melligs. Asynchronous games
[RW11] Rideau and Winskel. Concurrent strategies

ANNOTATED CONCURRENT GAMES FOR TIME ANALYSIS

R-1PA

Ix¥y=D(x) V D(y) LKy

xi=c xi=y

-D(c)V D(y) Vz-D(y)V D(z)

|-

D(c)VD(y) —D(y)VD(z)

y

Time analysis

newref r in
Ir H r ;= true

Computational adequacy.

Pl v iff vl =1PI,

v € {true, false}

Time analysis

newref r in
Ir H r ;= true

Computational adequacy.

Pl v iff vl €I[PI,

v € {true, false}

Time analysis

newref r in
Ir H r ;= true

Computational adequacy.

PV iff Ivl* € [P, v € {true, false}

Q. What is the minimal amount of time necessary to run P?
— to get true?
— to get false?

Time analysis

P =
newref r in
wait(2) | wait(1)
Ir r .= true
wait(2)
Computational adequacy.
Pyv iff vl € [P], v € {true, false}

Q. What is the minimal amount of time necessary to run P?
— to get true?
— to get false?

The R-IPA language

o Types:
B = com | bool | memg | memy,
AB = B|A—B
@ Syntax:
M;N = |x|Ax.t]|MN

| true | false | ifte b M N

| 'skip | M;N | M|V | L

| wait(«) with o € R
| newref rin M| IM | M := true

Interleaving based semantics

P =
newref r in
wait(2) || wait(1)
Ir r := true

wait(2)

Interleaving based semantics

wait(2) || wait(1)
Ir r = true
wait(2)

wait(2),

Interleaving based semantics

wait(2), Ir,

wait(1)
r:= true
wait(2)

Interleaving based semantics

wait(1)
r .= true
wait(2)

wait(2), Ir, wait(1),

Interleaving based semantics

r := true
wait(2)

wait(2), r, wait(1), r:=true,

Interleaving based semantics

wait(2)

wait(2), Ir, wait(1), r:=true, wait(2) P || false

Interleaving based semantics

P =
wait(2) || wait(1)
Ir r = true
wait(2)
wait(2), Ir, wait(1), r:=true, wait(2) P ||® false

wait(1),

Interleaving based semantics

P =
wait(2)
Ir r = true
wait(2)
wait(2), Ir, wait(1), r:==true, wait(2) P || false

wait(1), wait(2),

Interleaving based semantics

Ir r := true
wait(2)

wait(2), Ir, wait(1), r:==true, wait(2) P || false
wait(1), wait(2), r:=true,

Interleaving based semantics

wait(2)

wait(2), Ir, wait(1), r:=true, wait(2) P || false
wait(1), wait(2), r:=true, !r,

Interleaving based semantics

wait(2)

wait(2), Ir, wait(1), r:=true, wait(2) P || false
wait(1), wait(2), r:=true, 'r, wait(2) P |° true

Slot games?
P —
5
wait(2)
wait(2), r, wait(1), r:==true, wait(2) P |)° false
wait(1), wait(2), r:=true, !r, wait(2) P 1° true
Pl=frun@OQF, runO@ D, ...}
Computational adequacy: PUv iff Fsc[M]st|s|=t

1[GhicaOS] Ghica. Slot games: a quantitative model of computation

True concurrency?

Q: What about multicore systems?

P =
newref r in
wait(2) || wait(1)
Ir r := true

wait(2)

True concurrency?

Q: What about multicore systems?

P =
newref r in
wait(2) || wait(1)
Ir r := true

wait(2)

True concurrency?

Q: What about multicore systems?

newref r in

Ir r := true
wait(2)

True concurrency?

Q: What about multicore systems?

newref r in

r := true
wait(2)

True concurrency?

Q: What about multicore systems?

newref r in

wait(2)

P |* false !

True concurrency?

Q: What about multicore systems?

P =
newref r in
wait(2) || wait(1)
Ir r := true

wait(2)

True concurrency?

Q: What about multicore systems?

newref r in
wait(2)
Ir r:= true
wait(2)

True concurrency?

Q: What about multicore systems?

newref r in
wait(2)
Ir
wait(2)

True concurrency?

Q: What about multicore systems?

newref r in

Ir

P Y3 true !

True concurrency?

Q: What about multicore systems?

(M,s, t) — (M, t)

(M|IN,s,t) = (M'||N,s",t')

True concurrency?

Q: What about multicore systems?

(M,s, t) — (M, t)
(M|IN,s,t) = (M'||N,s",t')

(M,s, t) =" (M, s t') (N,s, t) =" (N',s" ") .,

s',s""non

<M H N75’ t> —" (M/ H N/,sl \Vi 5”, max(t’, t”)) interfering

Annotated concurrent games

newref r in
wait(2) || wait(1)
Ir r:= true P @3 true

wait(2)

[CC16]* + time annotations

2[CCl6] Castellan and Clairambault. Causality vs. interleavings in concurrent game semantics

Concurrent game semantics of IPA [CC16]

@ Types as games

[com] = run [bool] = q
v N
done ﬁﬁ &ff
Definition
A game is an event structure with polarity: (JA|, <a, #a, pol,) J

%(A) is the set of configurations: down-closed compatible subsets of A.

Concurrent game semantics of IPA [CC16]

@ Types as games

mem = [memg] ® [memy]
T w
A~ AF ok

Constructions on games.

o If Ais a game, A has the same structure with polarity inverted.

o If A, B are games, A® B has events |A| + |B|, and components inherited.

Concurrent game semantics of IPA [CC16]

@ Programs as strategies

[II]: (com ® com)*t

runy runz
\% v
done; donep

Definition

A play (gq,<gq) : A'is a partial order s.t.:

com

run

done

« (rule respecting) €(q) C €(A) « (courteous) a — b

Concurrent game semantics of IPA [CC16]

@ Programs as strategies

[1Il]: com & com -+ com
runy runy run

\% v \%
done; done; done

Definition
A play (gq,<gq) : A'is a partial order s.t.:
« (rule respecting) €(q) C €(A) « (courteous) a — b

Concurrent game semantics of IPA [CC16]

@ Programs as strategies

[1Il]: com & com -+ com
runlé‘/rung%\ run

- .
done; donep done

_7?

Definition
A play (gq,<gq) : A'is a partial order s.t.:
« (rule respecting) €(q) C €(A) « (courteous) a — b

Concurrent game semantics of IPA [CC16]
@ Programs as strategies

[1I]: com ® com —— com

run

runlé%

¥

done,; done,

—n

done

Definition
A play (gq,<g) : A'is a partial order s.t.:
x (rule respecting) €(q) C €(A) « (courteous) a — b

Concurrent game semantics of IPA [CC16]

@ Programs as strategies

[cel] : mem

N

=h<t— =

<=

AF<t— =
Q4=

Definition
A play (gq,<gq) : A'is a partial order s.t.:

« (rule respecting) €(q) C €(A) « (courteous) a — b

A strategy is a down-closed set of plays (with extra conditions).

Annotated concurrent game semantics of R-IPA

@ Programs as R-strategies

a™® ap’ "

A play (gq,<g) : A'is a partial order s.t.:
% (rule respecting) € (a) C €(A) * (courteous) a — b

a1X1

Definition

A R-annotation for g is a mapping X : (b € |q|”) — (R0 — R).

)

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).

Annotated concurrent game semantics of R-IPA

@ Programs as R-strategies

[skip] : com

run™

¥

done

Definition
A play (gq,<g) : A'is a partial order s.t.:
x (rule respecting) €(a) C €(A) * (courteous) a — b
A R-annotation for g is a mapping X : (b € |q|”) — (R0 — R). J

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).

Annotated concurrent game semantics of R-IPA

@ Programs as R-strategies

[wait()] : com

done*te

Definition
A play (gq,<g) : A'is a partial order s.t.:
x (rule respecting) €(a) C €(A) + (courteous) a — b
A R-annotation for g is a mapping X : (b € |q|”) — (R0 — R). J

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).

Annotated concurrent game semantics of R-IPA

@ Programs as R-strategies

[1/7: ecom & com —— com
run®
runf&%
done] done3
done ™)
Definition
A play (gq,<g) : A'is a partial order s.t.:
* (rule respecting) € (a) C €(A) * (courteous) a — b

A R-annotation for g is a mapping X : (b € |q|”) — (R0 — R).

)

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).

Annotated concurrent game semantics of R-IPA

@ Programs as R-strategies

[cell] : mem

X Yy

4,\47 | < |

—

okmax(x.y) gmax(oy) gy
Definition
A play (gq,<g) : A'is a partial order s.t.:
% (rule respecting) € (a) C %(A) * (courteous) a — b

A R-annotation for g is a mapping X : (b € |q|”) — (R0 — R).

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).

Composition example

[wait(1) || wait3)] =[] ([wait(1)] ® [wait(3)])
com &® com com ® com —t> com
run*
runy runy run{%
©
donej*! doney*? done? done3

donem(v:2)

Composition example

[wait(1) || wait(3)]

com &® com

runy runy’

+1 +3

\4 w
done; done,

= [ITo(wait(1)] © [wait(3)])

com ® com —= com
run®
runf‘k/’//”;;;;//’//’//’/
done? done}

donem(y:2)

Composition example

[wait(1) || wait(3)]

com &® com

runy runy’

+1 +3

\4 w
done; done,

= [ITo(wait(1)] © [wait(3)])

com R com — com
run™
runf4*”’////:;;g””///////
done? done}

donem(y:2)

Composition example

[wait(1) || wait(3)]

com & com

runy runy

+1 +3

\4 w
done; done,

= [ITo(wait(1)] © [wait(3)])

com ® com —= com
/ o
runj runy
done? done3

done™>(y»2)

Composition example

[wait(1) || wait(3)]

com & com

runy runy’

donel™ doney*3

= [ITo(wait(1)] © [wait(3)])

com ® com —= com
run®
runfé{
done’ done3

done™>(y»2)

Composition example

[wait(1) || wait(3)]

com & com

runy runy’

+1 +3

\4 w
done; done,

= [ITo(wait(1)] © [wait(3)])

com ® com —= com
run®
runfé{
done? done;

done™>(y»2)

Composition example

[wait(1) || wait(3)]

com & com

runy runy’

+1 +3

\4 w
done; done,

= [ITo(wait(1)] © [wait(3)])

com ® com —= com
run®
runfé{
done? done3

done™>(>2)

done max(x+1,x+3)=x+3

Composition example

[wait(1) || wait3)] =[] ([wait(1)] ® [wait(3)])
com &® com com ® com —t> com
run*
runy runy run{4V”//”:;;;;;::::::;;
©
donej*! doney*? done] done3

donem(v:2)

run*

done**3

Composition example

[wait(1) || wait(3)]

com &® com

runy runy’
doney™ doney*?
run*

done**3

= [ITo(wait(1)] © [wait(3)])

com ® com —f=> com
run*
run’{%
y z
doney done3

donem(v:2)

= [wait(3)]

Example

P=
newref rin
wait(2) || wait(1)
P’ Ir r := true
wait(2)
[P'] mem —> bool
/ q><
|,><+2 Wx+1
fa ok

x4 2

mem

X

[[cell]]

\g\xg Vo

okmax x,y) ttmax(x,y) ok”

Example

P=
newref rin
wait(2)

P’ Ir

wait(1)
r := true
wait(2)

[PP®cell] : mem —

X

/ q
x+2 x+1

r wW

ﬁ:x+2 ka+2

e

bool

[cell] : mem
IR

~ okmax (x,y)

Example

P =
newref rin
wait(2) || wait(1)
P’ Ir r := true
wait(2)
[PP®cell] : mem — bool

[cell] : mem

Interpretation of R-IPA

Games and R-strategies with ®, ®, L form a compact closed category.

Theorem J

In fact, well-threaded negative games and R-strategies form a symmetric
monoidal closed category (smcc) with products.

[TEM:A]:[IN—=[A]

M,N = |x|Axt]| MN
| true | false | ifte b M N
| skip | M;N | M || N | L
| wait(«)
| newref rin M | IM | M := true

ANENEN

Interpretation of R-IPA

Theorem

Games and R-strategies with ®, ®, L form a compact closed category.

In fact, well-threaded negative games and R-strategies form a symmetric
monoidal closed category (smcc) with products.

[TEM:A]:[IN—=[A]

M,N = |x|Axt]| MN
| true | false | ifte b M N
| skip | M;N | M || N | L
| wait(«)
| newref rin M | IM | M := true

ANENENENEN

Computational adequacy 3

Theorem

Soundness: If M ' v then ¢ — v**" € [M] with t' < t.

Theorem
Adequacy: If ¢ — V' € [M] then M |}* v.

3[ACL19] A., Clairambault and Laurent. Resource-tracking concurrent games

Computational adequacy 3

Theorem
Soundness: If M |}* v then q* — = [M] witht' < t. J

Resource bimonoid

wait(a), a € R ~ consume(a), @« € R

Theorem
Adequacy: If ¢ — v*** € [M] then M |}° v. J

3[ACL19] A., Clairambault and Laurent. Resource-tracking concurrent games

ANNOTATED CONCURRENT GAMES

R-1PA

IxVy-D(x) V D(y) LKy

=D(c) v D(y) Vz=D(y) Vv D(z)
D(c)vD(y) =D(y)VD(z)

z

ANNOTATED CONCURRENT GAMES

R-IPA newref (r,false) in FHy=D(x) v DB LK,
wait(2) || wait(1)

Vy=D(c) V D(y) Vz=D(y)V D(z)
Ir r .= true

wait(2) -D(c)VD(y) —D(y)V D(z)

z

Concurrent games: CG

Definition

A game is an event structure with polarity: (JA|, <a,#a, pol,)

A play (gq,<g) : A'is a partial order s.t.:
* (rule respecting) (q) C %(A) * (courteous) a — b

A strategy is a down-closed set of annotated plays (with extra conditions).

Theorem

Games and strategies with ©, ®, L. form a compact closed category.

Annotated concurrent games: R-CG

Definition

A game is an event structure with polarity: (JA|, <a,#a, pol,)

A play (gq,<g) : A'is a partial order s.t.:

* (rule respecting) (q) C %(A) * (courteous) a — b

o
A R-annotation for g is a mapping) : (b € |q|") — (R — R).

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).

Theorem
Games and R-strategies with ®, ®, L form a compact closed category.

Annotated concurrent games: T-CG
Equational theory: T = (0,%,=)
Definition

A T-game is an event structure with polarity: (|A|, <a, #a, pol,) together
with a typing function |A| — 0.

A play (gq,<g) : A'is a partial order s.t.:

* (rule respecting) (q) C %(A) * (courteous) a — b
A T-annotation for g is a mapping X : (b € |g|”) — T (6([s]o), 8(s)).

A T-strategy is a down-closed set of T-annotated plays (with extra conditions).

Theorem J

T-games and T-strategies with ®, ®, L form a compact closed category.

Annotated concurrent games: from T-CG to R-CG

@ Real functions: R-CG
0 = {R}
fesiff f:R" =R ~ vte Tm(V), T:RVI 5 R

h=teTm(V)iffi=% ~ flta/x]=foxh

Annotated concurrent games: from T-CG to R-CG

@ Real functions: R-CG
0 = {R}
fesiff f:R" =R ~ vte Tm(V), T:RVI 5 R

h=teTm(V)iffi=% ~ flta/x]=foxh

o Cartesian category: C-CG 0 =Co

Annotated concurrent games: from T-CG to R-CG

@ Real functions: R-CG
0 = {R}
fesiff f:R" =R ~ vte Tm(V), T:RVI 5 R

h=teTm(V)iffi=% ~ flta/x]=foxh

o Cartesian category: C-CG 0 =Co

@ Terms: ¥-CG T = ({e},X%,0)

ANNOTATED CONCURRENT GAMES FOR HERBRAND’S
THEOREM

R-CG

newref (r,false) in LK,
wait(2) || wait(1)
Ir r .= true

wait(2)

ANNOTATED CONCURRENT GAMES FOR HERBRAND’S
THEOREM

R-CG >-CG

newref (r,false) in LKy
wait(2) || wait(1) o
Ir ri= tru

wait(2)

Herbrand's witnesses

Herbrand'’s theorem (Simple)

A purely existential formula 3x (x) is valid in classical logic iff there is a finite
set of witnesses t1,...,t, € Tmx s.t. = o(t1)) V...V o(tn).

Example |= 3x ~D(x) V D(f(x)) J

= (=D(c) v D(f(c))) v (=D(f(c)) v D(f(f(c))))

Herbrand's witnesses

Herbrand's theorem (Simple)

A purely existential formula 3x o(x) is valid in classical logic iff there is a finite
set of witnesses t1,...,t, € Tmx s.t. = o(t1)) V...V o(tn).

Example = 3x ~D(x) V D(f(x)))

= (=D(c) v D(f(c))) v (=D(f(c)) v D(f(f(c))))

Prop. TAUTOLOGY

F ~D(c) v D(f(c)), ~D(f(c)) v D(£(f(<)))

F —D(c) Vv D(f(c)), 3x -D(x) V D(f(x)) 3”X;= f(e)
F 3x =D(x) V D(f(x)), 3x ~D(x) V D(f(x)) cél’m;mm

= 3x ~D(x) vV D(f(x))

Herbrand proofs

Herbrand’s theorem (General)
A 1% order formula ¢ is valid in classical logic iff it has a Herbrand proof. J
Example = 3xVy, =D(x)V D(y) (DF))

A proof for DF:

Propr. TAUTOLOGY

= =D(c) Vv D(y), ~D(y) v D(z)) 3 x =y, ¥
- _\D(C) vV D(‘y)7E|XVy7 —\D(X) Vv D(y) I, X - \;/ !
X:1=c,
- EIxVy —|D(X) Vi D(y)7f|xvy —|D(X) V D(y)] |
CONTRACTION
F 3xVy =D(x) vV D(y)

[Mil87] Miller. A compact representation of proofs.

Herbrand proofs: Miller's expansion trees

Herbrand's theorem (Miller, 1987) J

A 1% order formula o is valid in classical logic iff it has an expansion tree.

Example | 3IxVy, -D(x) V D(y) (DF) J

An expansion tree for DF:

EleyﬁD(x) \Y% D y)
Vy-D(c)V D(y) Vz—D(y)V D(z)

D(c)vD(y) —D(y)Vv D(2)

z

[Mil87] Miller. A compact representation of proofs.

Herbrand proofs: Miller's expansion trees

Herbrand's theorem (Miller, 1987) J

A 1% order formula o is valid in classical logic iff it has an expansion tree.

Example | 3IxVy, -D(x) V D(y) (DF) J

An expansion tree for DF: L.
acyclicity

IxVy—D(x) vV D(y) 3 ¥
SN V4
Vy—D(c)V D(y) Vz-D(y)V D(z) v

/|

z validity

D(c)vD(y) —D(y)Vv D(2) = (=D(c) v D(y)) Vv (=D(y)V D(z))

[Mil87] Miller. A compact representation of proofs.

Herbrand proofs: Miller's expansion trees

Herbrand's theorem (Miller, 1987) J

A 1% order formula o is valid in classical logic iff it has an expansion tree.

Proof: By translation from the cut-free sequent calculus. — not compositional.

Example | 3xVy, =D(x) v D(y) (DF) J

An expansion tree for DF:

acyclicity
AxVy-D(x) V D(y) 15/1
¥y=D(c) v D(y) Vz=D(y) v D(2) v
y‘ z validity
~D(c)vD(y) —-D(y)V D(z) = (=D(c) v D(y)) Vv (=D(y)Vv D(z))

[Mil87] Miller. A compact representation of proofs.

Composable Expansion Trees?

Syntactic approaches: Heijltjes, * Hetzl and Weller, ® McKinley, ® via notions
of Herbrand proofs with cuts.

s
— o] s el oc=01002
Fo

Contribution ’ (semantic approach): Expansion trees as strategies in a
concurrent game model (categories of winning X-strategies).

Herbrand'’s theorem (Compositional Herbrand’s theorem)
A 1% order formula is valid iff there is a winning ¥-strategy: o : [¢]. J

4[HeilO] Heijltjes. Classical proof forestry.

>[HW13] Hetzl and Weller. Expansion trees with cut.

[MCK13] McKinley. Proof nets for Herbrand's theorem

"IACHW18] A., Clairambault, Hyland, Winskel. The True Concurrency of Herbrand’s Theorem

From expansion trees to 2 -strategies

An implicit two-player game played on the formula between dloise and Vbélard:

AxVy—-D(x) V D(y)
#y=D(c)V D(y) ¥z-D(y)V D(2)

=D(c) VvV D(y) -D(y) Vv D(z)

z

From expansion trees to 2 -strategies

An implicit two-player game played on the formula between dloise and Vbélard:

IxVy—-D(x) vV D(y)
Vy=D(c) v D(y) vz=D(y) Vv D(2)

—D(c)vD(y) —=D(y)V D(z)

z

An interpretation of formulas as games and proofs as X -strategies:

¥ 3¢ 3% ... 3,

v Yy

v
VitV V1 Vn

From expansion trees to 2 -strategies

An implicit two-player game played on the formula between dloise and Vbélard:

IxVy—-D(x) vV D(y)
Vy=D(c) v D(y) vz=D(y) Vv D(2)

—D(c)vD(y) —=D(y)V D(z)

z

An interpretation of formulas as games and proofs as winning X-strategies:

¥ 3¢ 3% ... 3,

v Yy

v
Vit vy V1 Vn

Example of winning conditions

Consider the Y-strategy o : [3x Vy =D(x) V D(y)] over DF

3 gn 3 ... 3,
% A \% Ty v
Vll sz v1 vn

Validity in expansion trees:
= (=D(c) v D(V1)) vV (=D(V1)V D(V2))

Example of winning conditions

Consider the Y-strategy o : [3x Vy =D(x) V D(y)] over DF

3 gn 3 ... 3,
% A \% Ty v
Vll sz v1 vn

Validity in expansion trees:
= (=D(c) v D(V1)) vV (=D(V1)V D(V2))

Can be decomposed into
E (=D(31)VD(V1)) V (=D(F2)V D(72)) [FT1+>c;F— V]

Winning conditions, Wpg(|o]) Labelling, A»

Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:

1 P

A\ A\
V1 Vo

o is a winning on x if | Wa(x)[As]. J

Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:

o is a winning on x if | Wa(x)[As]. J

Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:

=

o is a winning on x if | Wa(x)[As]. J

Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:

J1
— ‘\D(Hl) \Y% D(Vl)

\%
V1

o is a winning on x if | Wa(x)[As]. J

Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:

J1 =)
— (“D(Hl)VD(Vl)) v T

\%
V1

o is a winning on x if | Wa(x)[As]. J

Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:

= =)
— (=D(31) v D(¥1)) Vv (=D(32) V D(2))

A\ A\
V1 Vo

o is a winning on x if | Wa(x)[As]. J

Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:

T
s (-D(E) VD)) V (~DE:)VD(%)) V ...

A\ A\
V1 Vo

o is a winning on x if | Wa(x)[As]. J

Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:

T
s (-D(E) VD)) V (~DE:)VD(%)) V ...

A\ A\
V1 Vo

o is a winning on x if | Wa(x)[As]. J

Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

Definition

A X-strategy o : A is winning on W4 iff for all x € C*°(0) 3-maximal,

= Wa(x)[As]

— Two new constructors on games: @ (conjunction) and % (disjunction)

with units 1 = (0, Wy (0) = T) L = (0, W (0) = L)

— Winning strategies o : A~ % B are stable under composition
(*-autonomous category).

LK1 interpretation

Propositional connectives (MLL *-autonomous model)

Quantifiers
[Bxelv = 3 [elveixy [Vxelv = Vi [elvuix

LK1 interpretation

Propositional connectives (MLL *-autonomous model)

Quantifiers
[Bxelv = e [elveix [Vxelv = Vs [elveixy
. YT
Weakening: for any formula ¢, wy,p @ L—=[¢] FY T

LK1 interpretation

Propositional connectives (MLL *-autonomous model)

Quantifiers
Bxelv = 7Y 3e[elvepg [Vxelv = Q) Y lelvei

new new

Weakening: for any formula ¢, wy,p @ L—=[¢]

T e
Contraction: for any formula ¢, ¢y @ [¢] @ [¢] —=[«] SR Ie
Bx, Tl ® [3x,T] -= [3x,T] vx, T] % [vx,T] -+ [vx,T]

i i

i1

Back to Herbrand's proofs

Herbrand'’s theorem (Compositional Herbrand's theorem)

A 1% order formula o is valid iff there is a winning ¥-strategy:

o : [el. J

Proof:

= Interpret the classical sequent calculus LKj.

< Winning strategies ressemble expansion trees ...

Back to Herbrand's proofs

Herbrand'’s theorem (Compositional Herbrand's theorem)
o : [el. J

A 1% order formula o is valid iff there is a winning ¥-strategy:

Proof:
= Interpret the classical sequent calculus LKj.

< Winning strategies ressemble expansion trees ...

Lemma (Compactness)

From every winning strategy o : [¢] one can effectively extract a finite
expansion tree for .

Conclusion

Perspectives

Perspectives

Perspectives

Perspectives

Perspectives

R-CG

interpretation?

>-CG

	Introduction to semantics
	Annotated concurrent games for time analysis
	Annotated concurrent games
	Annotated concurrent games for Herbrand's theorem

