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Semantics of functional programs

P = fun x— 4xx

What does P compute?

Denotational semantics.
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Semantics of functional programs

P = fun x— 4xx

What does P compute?

Denotational semantics. . .
Operational semantics.

Pl =
N —- N P2 = (funx—4xx)2
n ~ 4n — (4%2)
— 8

P2y 8



Semantics of functional programs

twice = fun f — fun x — f (f x)
double = funy—y+y
P = twice double

What does P compute?

Denotational semantics.

[Pl =
N —- N P2
n +— 4n

Operational semantics.

(fun f — fun x — f (f x)) double 2
(fun x — double (double x)) 2
double (double 2)

(fun y — y + y) (double 2)

(double 2) + (double 2)

(fun y — y + y 2) + (double 2)
(2+2) + (double 2)
C+2)+((funy—y+y)2)
(2+2)+(2+2)

8
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Semantics of functional programs

twice = fun f — fun x — f (f x)
double = funy—y+y
P = twice double

What does P compute?

Denotational semantics.

Pl =
N —- N P2
n +— 4n

Operational semantics.

(fun f — fun x — f (f x)) double 2
(fun x — double (double x)) 2
double (double 2)

(fun y — y + y) (double 2)

(double 2) + (double 2)

(fun y — y +y 2) + (double 2)
(2+2) + (double 2)

C+2)+ ((funy—y+y)2)
2+2)+(2+2)

8

@ compositionality:
[P] = [twice] o [double]

@ invariant of computation:

Lemnmlmlld

Pl viff [P] = [v]



Curry-Howard isomorphism

Type system

MNx:AFP(x):B r’EP:A—-B THFM:A
Mx:AFx:A I (fun x— P(x)): A= B r-pPM:B
1
INx:Ak P(x):B ™

N (funx— P(x)):A—=B THEM:A
Ik (fun x — P(x)) M :B




Curry-Howard isomorphism

Deduction system

Mo Ar B -7 A-sB TH
- A A TF A— B - B
1
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~» Computational meaning of proofs: proofs as programs/functions.



Semantics of programs and proofs

Denotational models

f:A— B

fun / LJ

Programs / Proofs




Semantics of programs and proofs

Denotational models

oc:A—+B RCAxB
f:A— B
while  jump LL vX,3X
rand(0,1
(©.1) fun / LJ VoA
newref || Vx, 3x LK

Programs / Proofs




Semantics of programs and proofs
Denotational models

Concurrent

,f\ v Games (CG)

IPA
newref r in
Ir H r := true

Programs / Proofs

[Mel05] Melligs. Asynchronous games
[RW11] Rideau and Winskel. Concurrent strategies



Semantics of programs and proofs

Denotational models

q
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CONTRACTION

Programs / Proofs

[Mel05] Melligs. Asynchronous games
[RW11] Rideau and Winskel. Concurrent strategies



Semantics of programs and proofs

Denotational models
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[Mel05] Melligs. Asynchronous games
[RW11] Rideau and Winskel. Concurrent strategies



Semantics of programs and proofs

Denotational models
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[RW11] Rideau and Winskel. Concurrent strategies



Semantics of programs and proofs

Denotational models

q
,24 Fo=e
W R-CG 4 al

[ ok’ Ve 2

R-1PA newref r in LKy
wait(2) || wait(1) F D@ VDL, DOVOE)
Iy r— i FD(e) v D(y). 3x¥y, ~D) VD)
I . X = e,V
. F 3xVy =D(x) V D(y), 3xVy —=D(x) V D(y) o rracTION
wait(2) F 3x¥y —D(x) V D(y) "

Programs / Proofs

[Mel05] Melligs. Asynchronous games
[RW11] Rideau and Winskel. Concurrent strategies



ANNOTATED CONCURRENT GAMES FOR TIME ANALYSIS

R-1PA

Ix¥y=D(x) V D(y) LKy

xi=c xi=y

-D(c)V D(y) Vz-D(y)V D(z)
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D(c)VD(y)  —D(y)VD(z)
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Time analysis

newref r in
Ir H r ;= true

Computational adequacy.

Pl v iff vl =1PI,

v € {true, false}



Time analysis

newref r in
Ir H r ;= true

Computational adequacy.

Pl v iff vl €I[PI,

v € {true, false}



Time analysis

newref r in
Ir H r ;= true

Computational adequacy.

PV iff Ivl* € [P, v € {true, false}

Q. What is the minimal amount of time necessary to run P?
— to get true?
— to get false?



Time analysis

P =
newref r in
wait(2) | wait(1)
Ir r .= true
wait(2)
Computational adequacy.
Pyv iff vl € [P], v € {true, false}

Q. What is the minimal amount of time necessary to run P?
— to get true?
— to get false?



The R-IPA language

o Types:
B = com | bool | memg | memy,
AB = B|A—B
@ Syntax:
M;N = |x|Ax.t]|MN

| true | false | ifte b M N

| 'skip | M;N | M|V | L

| wait(«) with o € R
| newref rin M| IM | M := true



Interleaving based semantics

P =
newref r in
wait(2) || wait(1)
Ir r := true

wait(2)



Interleaving based semantics

wait(2) || wait(1)
Ir r = true
wait(2)

wait(2),



Interleaving based semantics

wait(2), Ir,

wait(1)
r:= true
wait(2)



Interleaving based semantics

wait(1)
r .= true
wait(2)

wait(2), Ir, wait(1),



Interleaving based semantics

r := true
wait(2)

wait(2), r, wait(1), r:=true,



Interleaving based semantics

wait(2)

wait(2), Ir, wait(1), r:=true, wait(2) P || false



Interleaving based semantics

P =
wait(2) || wait(1)
Ir r = true
wait(2)
wait(2), Ir, wait(1), r:=true, wait(2) P ||® false

wait(1),



Interleaving based semantics

P =
wait(2)
Ir r = true
wait(2)
wait(2), Ir, wait(1), r:==true, wait(2) P || false

wait(1), wait(2),



Interleaving based semantics

Ir r := true
wait(2)

wait(2), Ir, wait(1), r:==true, wait(2) P || false
wait(1), wait(2), r:=true,



Interleaving based semantics

wait(2)

wait(2), Ir, wait(1), r:=true, wait(2) P || false
wait(1), wait(2), r:=true, !r,



Interleaving based semantics

wait(2)

wait(2), Ir, wait(1), r:=true, wait(2) P || false
wait(1), wait(2), r:=true, 'r, wait(2) P |° true



Slot games?
P —
5
wait(2)
wait(2), r, wait(1), r:==true, wait(2) P |)° false
wait(1), wait(2), r:=true, !r, wait(2) P 1° true
Pl=frun@OQF, runO@ D, ...}
Computational adequacy: PUv iff Fsc[M]st|s|=t

1[GhicaOS] Ghica. Slot games: a quantitative model of computation



True concurrency?

Q: What about multicore systems?

P =
newref r in
wait(2) || wait(1)
Ir r := true

wait(2)



True concurrency?

Q: What about multicore systems?

P =
newref r in
wait(2) || wait(1)
Ir r := true

wait(2)



True concurrency?

Q: What about multicore systems?

newref r in

Ir r := true
wait(2)



True concurrency?

Q: What about multicore systems?

newref r in

r := true
wait(2)



True concurrency?

Q: What about multicore systems?

newref r in

wait(2)

P |* false !



True concurrency?

Q: What about multicore systems?

P =
newref r in
wait(2) || wait(1)
Ir r := true

wait(2)



True concurrency?

Q: What about multicore systems?

newref r in
wait(2)
Ir r:= true
wait(2)



True concurrency?

Q: What about multicore systems?

newref r in
wait(2)
Ir
wait(2)



True concurrency?

Q: What about multicore systems?

newref r in

Ir

P Y3 true !



True concurrency?

Q: What about multicore systems?

(M,s, t) — (M, t)

(M|IN,s,t) = (M'||N,s",t')



True concurrency?

Q: What about multicore systems?

(M,s, t) — (M, t)
(M|IN,s,t) = (M'||N,s",t')

(M,s, t) =" (M, s t') (N,s, t) =" (N',s" ") .,

s',s""non

<M H N75’ t> —" (M/ H N/,sl \Vi 5”, max(t’, t”)) interfering




Annotated concurrent games

newref r in
wait(2) || wait(1)
Ir r:= true P @3 true

wait(2)

[CC16]* + time annotations

2[CCl6] Castellan and Clairambault. Causality vs. interleavings in concurrent game semantics



Concurrent game semantics of IPA [CC16]

@ Types as games

[com] = run [bool] = q
v N
done ﬁﬁ &ff
Definition
A game is an event structure with polarity: (JA|, <a, #a, pol,) J

%(A) is the set of configurations: down-closed compatible subsets of A.



Concurrent game semantics of IPA [CC16]

@ Types as games

mem = [memg] ® [memy]
T w
A~ AF ok

Constructions on games.

o If Ais a game, A has the same structure with polarity inverted.

o If A, B are games, A® B has events |A| + |B|, and components inherited.




Concurrent game semantics of IPA [CC16]

@ Programs as strategies

[II]: (com ® com)*t

runy runz
\% v
done; donep

Definition

A play (gq,<gq) : A'is a partial order s.t.:

com

run

done

« (rule respecting) €(q) C €(A) « (courteous) a — b




Concurrent game semantics of IPA [CC16]

@ Programs as strategies

[1Il]: com & com -+ com
runy runy run

\% v \%
done; done; done

Definition
A play (gq,<gq) : A'is a partial order s.t.:
« (rule respecting) €(q) C €(A) « (courteous) a — b




Concurrent game semantics of IPA [CC16]

@ Programs as strategies

[1Il]: com & com -+ com
runlé‘/rung%\ run

- .
done; donep done

\_7?

Definition
A play (gq,<gq) : A'is a partial order s.t.:
« (rule respecting) €(q) C €(A) « (courteous) a — b




Concurrent game semantics of IPA [CC16]
@ Programs as strategies

[1I]: com ® com —— com

run

runlé%

¥

done,; done,

—n

done

Definition
A play (gq,<g) : A'is a partial order s.t.:
x (rule respecting) €(q) C €(A) « (courteous) a — b




Concurrent game semantics of IPA [CC16]

@ Programs as strategies

[cel] : mem

N

=h<t— =

<=

AF<t— =
Q4=

Definition
A play (gq,<gq) : A'is a partial order s.t.:

« (rule respecting) €(q) C €(A) « (courteous) a — b

A strategy is a down-closed set of plays (with extra conditions).



Annotated concurrent game semantics of R-IPA

@ Programs as R-strategies

a™® ap’ "

A play (gq,<g) : A'is a partial order s.t.:
% (rule respecting) € (a) C €(A) * (courteous) a — b

a1X1

Definition

A R-annotation for g is a mapping X : (b € |q|”) — (R0 — R).

)

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).



Annotated concurrent game semantics of R-IPA

@ Programs as R-strategies

[skip] : com

run™

¥

done

Definition
A play (gq,<g) : A'is a partial order s.t.:
x (rule respecting) €(a) C €(A) * (courteous) a — b
A R-annotation for g is a mapping X : (b € |q|”) — (R0 — R). J

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).



Annotated concurrent game semantics of R-IPA

@ Programs as R-strategies

[wait()] : com

done*te

Definition
A play (gq,<g) : A'is a partial order s.t.:
x (rule respecting) €(a) C €(A) + (courteous) a — b
A R-annotation for g is a mapping X : (b € |q|”) — (R0 — R). J

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).



Annotated concurrent game semantics of R-IPA

@ Programs as R-strategies

[1/7: ecom & com —— com
run®
runf&%
done] done3
done ™)
Definition
A play (gq,<g) : A'is a partial order s.t.:
* (rule respecting) € (a) C €(A) * (courteous) a — b

A R-annotation for g is a mapping X : (b € |q|”) — (R0 — R).

)

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).



Annotated concurrent game semantics of R-IPA

@ Programs as R-strategies

[cell] : mem

X Yy

4,\47 | < |

—

okmax(x.y) gmax(oy) gy
Definition
A play (gq,<g) : A'is a partial order s.t.:
% (rule respecting) € (a) C %(A) * (courteous) a — b

A R-annotation for g is a mapping X : (b € |q|”) — (R0 — R).

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).



Composition example

[wait(1) || wait3)] =[] ([wait(1)] ® [wait(3)])
com &® com com ® com —t> com
run*
runy runy run{%
©
donej*!  doney*? done? done3

donem(v:2)



Composition example

[wait(1) || wait(3)]

com &® com

runy runy’

+1 +3

\4 w
done; done,

= [ITo(wait(1)] © [wait(3)])

com ® com —= com
run®
runf‘k/’//”;;;;//’//’//’/
done? done}

donem(y:2)



Composition example

[wait(1) || wait(3)]

com &® com

runy runy’

+1 +3

\4 w
done; done,

= [ITo(wait(1)] © [wait(3)])

com R com — com
run™
runf4*”’////:;;g””///////
done? done}

donem(y:2)



Composition example

[wait(1) || wait(3)]

com & com

runy runy

+1 +3

\4 w
done; done,

= [ITo(wait(1)] © [wait(3)])

com ® com —= com
/ o
runj runy
done? done3

done™>(y»2)



Composition example

[wait(1) || wait(3)]

com & com

runy runy’

donel™  doney*3

= [ITo(wait(1)] © [wait(3)])

com ® com —= com
run®
runfé{
done’ done3

done™>(y»2)



Composition example

[wait(1) || wait(3)]

com & com

runy runy’

+1 +3

\4 w
done; done,

= [ITo(wait(1)] © [wait(3)])

com ® com —= com
run®
runfé{
done? done;

done™>(y»2)



Composition example

[wait(1) || wait(3)]

com & com

runy runy’

+1 +3

\4 w
done; done,

= [ITo(wait(1)] © [wait(3)])

com ® com —= com
run®
runfé{
done? done3

done™>(>2)

done max(x+1,x+3)=x+3



Composition example

[wait(1) || wait3)] =[] ([wait(1)] ® [wait(3)])
com &® com com ® com —t> com
run*
runy runy run{4V”//”:;;;;;::::::;;
©
donej*!  doney*? done] done3

donem(v:2)

run*

done**3



Composition example

[wait(1) || wait(3)]

com &® com

runy runy’
doney™  doney*?
run*

done**3

= [ITo(wait(1)] © [wait(3)])

com ® com —f=> com
run*
run’{%
y z
doney done3

donem(v:2)

= [wait(3)]



Example

P=
newref rin
wait(2) || wait(1)
P’ Ir r := true
wait(2)
[P'] mem —> bool
/ q><
|,><+2 Wx+1
fa ok

x4 2

mem

X

[[cell]]

\g\xg Vo

okmax x,y) ttmax(x,y) ok”



Example

P=
newref rin
wait(2)

P’ Ir

wait(1)
r := true
wait(2)

[PP®cell] : mem —

X

/ q
x+2 x+1

r wW

ﬁ:x+2 ka+2

e

bool

[cell] : mem
IR

~ okmax (x,y)



Example

P =
newref rin
wait(2) || wait(1)
P’ Ir r := true
wait(2)
[PP®cell] : mem — bool

[cell] : mem



Interpretation of R-IPA

Games and R-strategies with ®, ®, L form a compact closed category.

Theorem J

In fact, well-threaded negative games and R-strategies form a symmetric
monoidal closed category (smcc) with products.

[TEM:A]:[IN—=[A]

M,N = |x|Axt]| MN
| true | false | ifte b M N
| skip | M;N | M || N | L
| wait(«)
| newref rin M | IM | M := true

ANENEN



Interpretation of R-IPA

Theorem

Games and R-strategies with ®, ®, L form a compact closed category.

In fact, well-threaded negative games and R-strategies form a symmetric
monoidal closed category (smcc) with products.

[TEM:A]:[IN—=[A]

M,N = |x|Axt]| MN
| true | false | ifte b M N
| skip | M;N | M || N | L
| wait(«)
| newref rin M | IM | M := true

ANENENENEN



Computational adequacy 3

Theorem

Soundness: If M ' v then ¢ — v**" € [M] with t' < t.

Theorem
Adequacy: If ¢ — V' € [M] then M |}* v.

3[ACL19] A., Clairambault and Laurent. Resource-tracking concurrent games



Computational adequacy 3

Theorem
Soundness: If M |}* v then q* — = [M] witht' < t. J

Resource bimonoid

wait(a), a € R ~ consume(a), @« € R

Theorem
Adequacy: If ¢ — v*** € [M] then M |}° v. J

3[ACL19] A., Clairambault and Laurent. Resource-tracking concurrent games



ANNOTATED CONCURRENT GAMES

R-1PA

IxVy-D(x) V D(y) LKy

=D(c) v D(y) Vz=D(y) Vv D(z)
D(c)vD(y)  =D(y)VD(z)

z



ANNOTATED CONCURRENT GAMES

R-IPA newref (r,false) in FHy=D(x) v DB LK,
wait(2) || wait(1)

Vy=D(c) V D(y) Vz=D(y)V D(z)
Ir r .= true

wait(2) -D(c)VD(y)  —D(y)V D(z)

z




Concurrent games: CG

Definition

A game is an event structure with polarity: (JA|, <a,#a, pol,)

A play (gq,<g) : A'is a partial order s.t.:
* (rule respecting) (q) C %(A) * (courteous) a — b

A strategy is a down-closed set of annotated plays (with extra conditions).

Theorem

Games and strategies with ©, ®, L. form a compact closed category.




Annotated concurrent games: R-CG

Definition

A game is an event structure with polarity: (JA|, <a,#a, pol,)

A play (gq,<g) : A'is a partial order s.t.:

* (rule respecting) (q) C %(A) * (courteous) a — b

o
A R-annotation for g is a mapping ) : (b € |q|") — (R — R).

A R-strategy is a down-closed set of R-annotated plays (with extra conditions).

Theorem
Games and R-strategies with ®, ®, L form a compact closed category.




Annotated concurrent games: T-CG
Equational theory: T = (0,%,=)
Definition

A T-game is an event structure with polarity: (|A|, <a, #a, pol,) together
with a typing function |A| — 0.

A play (gq,<g) : A'is a partial order s.t.:

* (rule respecting) (q) C %(A) * (courteous) a — b
A T-annotation for g is a mapping X : (b € |g|”) — T (6([s]o), 8(s)).

A T-strategy is a down-closed set of T-annotated plays (with extra conditions).

Theorem J

T-games and T-strategies with ®, ®, L form a compact closed category.
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Annotated concurrent games: from T-CG to R-CG

@ Real functions: R-CG
0 = {R}
fesiff f:R" =R ~ vte Tm(V), T:RVI 5 R

h=teTm(V)iffi=%  ~  flta/x]=foxh

o Cartesian category: C-CG 0 =Co

@ Terms: ¥-CG T = ({e},X%,0)



ANNOTATED CONCURRENT GAMES FOR HERBRAND’S
THEOREM

R-CG

newref (r,false) in LK,
wait(2) || wait(1)
Ir r .= true

wait(2)




ANNOTATED CONCURRENT GAMES FOR HERBRAND’S
THEOREM

R-CG >-CG

newref (r,false) in LKy
wait(2) || wait(1) o
Ir ri= tru

wait(2)




Herbrand's witnesses

Herbrand'’s theorem (Simple)

A purely existential formula 3x (x) is valid in classical logic iff there is a finite
set of witnesses t1,...,t, € Tmx s.t. = o(t1)) V...V o(tn).

Example  |= 3x ~D(x) V D(f(x)) J

= (=D(c) v D(f(c))) v (=D(f(c)) v D(f(f(c))))



Herbrand's witnesses

Herbrand's theorem (Simple)

A purely existential formula 3x o(x) is valid in classical logic iff there is a finite
set of witnesses t1,...,t, € Tmx s.t. = o(t1)) V...V o(tn).

Example = 3x ~D(x) V D(f(x)) )

= (=D(c) v D(f(c))) v (=D(f(c)) v D(f(f(c))))

Prop. TAUTOLOGY

F ~D(c) v D(f(c)), ~D(f(c)) v D(£(f(<)))

F —D(c) Vv D(f(c)), 3x -D(x) V D(f(x)) 3”X;= f(e)
F 3x =D(x) V D(f(x)), 3x ~D(x) V D(f(x)) cél’m;mm

= 3x ~D(x) vV D(f(x))



Herbrand proofs

Herbrand’s theorem (General)
A 1% order formula ¢ is valid in classical logic iff it has a Herbrand proof. J
Example = 3xVy, =D(x)V D(y) (DF) )

A proof for DF:

Propr. TAUTOLOGY

= =D(c) Vv D(y), ~D(y) v D(z)) 3 x =y, ¥
- _\D(C) vV D(‘y)7E|XVy7 —\D(X) Vv D(y) I, X - \;/ !
X:1=c,
- EIxVy —|D(X) Vi D(y)7f|xvy —|D(X) V D(y) ] |
CONTRACTION
F 3xVy =D(x) vV D(y)

[Mil87] Miller. A compact representation of proofs.



Herbrand proofs: Miller's expansion trees

Herbrand's theorem (Miller, 1987) J

A 1% order formula o is valid in classical logic iff it has an expansion tree.

Example | 3IxVy, -D(x) V D(y) (DF) J

An expansion tree for DF:

EleyﬁD(x) \Y% D y)
Vy-D(c)V D(y) Vz—D(y)V D(z)

D(c)vD(y)  —D(y)Vv D(2)

z

[Mil87] Miller. A compact representation of proofs.



Herbrand proofs: Miller's expansion trees

Herbrand's theorem (Miller, 1987) J

A 1% order formula o is valid in classical logic iff it has an expansion tree.

Example | 3IxVy, -D(x) V D(y) (DF) J

An expansion tree for DF: L.
acyclicity

IxVy—D(x) vV D(y) 3 ¥
SN V4
Vy—D(c)V D(y) Vz-D(y)V D(z) v

/|

z validity

D(c)vD(y)  —D(y)Vv D(2) = (=D(c) v D(y)) Vv (=D(y)V D(z))

[Mil87] Miller. A compact representation of proofs.



Herbrand proofs: Miller's expansion trees

Herbrand's theorem (Miller, 1987) J

A 1% order formula o is valid in classical logic iff it has an expansion tree.

Proof: By translation from the cut-free sequent calculus. — not compositional.

Example | 3xVy, =D(x) v D(y) (DF) J

An expansion tree for DF:

acyclicity
AxVy-D(x) V D(y) 15/1
¥y=D(c) v D(y) Vz=D(y) v D(2) v
y‘ z validity
~D(c)vD(y)  —-D(y)V D(z) = (=D(c) v D(y)) Vv (=D(y)Vv D(z))

[Mil87] Miller. A compact representation of proofs.



Composable Expansion Trees?

Syntactic approaches: Heijltjes, * Hetzl and Weller, ® McKinley, ® via notions
of Herbrand proofs with cuts.

s
— o ] s el oc=01002
Fo

Contribution ’ (semantic approach): Expansion trees as strategies in a
concurrent game model (categories of winning X-strategies).

Herbrand'’s theorem (Compositional Herbrand’s theorem)
A 1% order formula  is valid iff there is a winning ¥-strategy: o : [¢]. J

4[HeilO] Heijltjes. Classical proof forestry.

>[HW13] Hetzl and Weller. Expansion trees with cut.

[MCK13] McKinley. Proof nets for Herbrand's theorem

"IACHW18] A., Clairambault, Hyland, Winskel. The True Concurrency of Herbrand’s Theorem



From expansion trees to 2 -strategies

An implicit two-player game played on the formula between dloise and Vbélard:

AxVy—-D(x) V D(y)
#y=D(c)V D(y) ¥z-D(y)V D(2)

=D(c) VvV D(y) -D(y) Vv D(z)

z
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An interpretation of formulas as games and proofs as X -strategies:

¥ 3¢ 3% ... 3,

v Yy
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From expansion trees to 2 -strategies

An implicit two-player game played on the formula between dloise and Vbélard:

IxVy—-D(x) vV D(y)
Vy=D(c) v D(y) vz=D(y) Vv D(2)

—D(c)vD(y)  —=D(y)V D(z)

z

An interpretation of formulas as games and proofs as winning X-strategies:

¥ 3¢ 3% ... 3,

v Yy

v
Vit vy V1 Vn



Example of winning conditions

Consider the Y-strategy o : [3x Vy =D(x) V D(y)] over DF

3 gn 3 ... 3,
% A \% Ty v
Vll sz v1 vn

Validity in expansion trees:
= (=D(c) v D(V1)) vV (=D(V1)V D(V2))



Example of winning conditions

Consider the Y-strategy o : [3x Vy =D(x) V D(y)] over DF

3 gn 3 ... 3,
% A \% Ty v
Vll sz v1 vn

Validity in expansion trees:
= (=D(c) v D(V1)) vV (=D(V1)V D(V2))

Can be decomposed into
E  (=D(31)VD(V1)) V (=D(F2)V D(72)) [FT1+>c;F— V]

Winning conditions, Wpg(|o]) Labelling, A»



Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:

1 P

A\ A\
V1 Vo

o is a winning on x if | Wa(x)[As]. J
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Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

To each configuration of [3x Vy =D(x) V D(y)], we associate a formula:
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A\ A\
V1 Vo

o is a winning on x if | Wa(x)[As]. J
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:

Wa: (x € €(A)) = QFx(x)

where QF5(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

Definition

A X-strategy o : A is winning on W4 iff for all x € C*°(0) 3-maximal,

= Wa(x)[As]

— Two new constructors on games: @ (conjunction) and % (disjunction)

with units 1 = (0, Wy (0) = T) L = (0, W (0) = L)

— Winning strategies o : A~ % B are stable under composition
(*-autonomous category).



LK1 interpretation

Propositional connectives (MLL *-autonomous model)

Quantifiers
[Bxelv = 3 [elveixy [Vxelv = Vi [elvuix
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LK1 interpretation

Propositional connectives (MLL *-autonomous model)

Quantifiers
Bxelv = 7Y 3e[elvepg [Vxelv = Q) Y lelvei

new new

Weakening: for any formula ¢, wy,p @ L—=[¢]

T e
Contraction: for any formula ¢, ¢y @ [¢] @ [¢] —=[«] SR Ie
Bx, Tl ® [3x,T] -= [3x,T] vx, T] % [vx,T] -+ [vx,T]

i i

i1



Back to Herbrand's proofs

Herbrand'’s theorem (Compositional Herbrand's theorem)

A 1% order formula o is valid iff there is a winning ¥-strategy:

o : [el. J

Proof:

= Interpret the classical sequent calculus LKj.

< Winning strategies ressemble expansion trees ...



Back to Herbrand's proofs

Herbrand'’s theorem (Compositional Herbrand's theorem)
o : [el. J

A 1% order formula o is valid iff there is a winning ¥-strategy:

Proof:
= Interpret the classical sequent calculus LKj.

< Winning strategies ressemble expansion trees ...

Lemma (Compactness)

From every winning strategy o : [¢] one can effectively extract a finite
expansion tree for .




Conclusion
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Perspectives

R-CG

interpretation?

>-CG
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