The True Concurrency of Herbrand's Theorem

Aurore Alcolei LIP & ENS Lyon

Joint work with

Pierre Clairambault, Martin Hyland, Glynn Winskel

CSL18, Birmingham

Roadmap

- Herbrand's theorem, an overview
- 2 When games come into play
- Interpretation

Herbrand's witnesses

Herbrand's theorem (Simple)

A purely existential formula $\exists \bar{\mathbf{x}} \ \varphi(\bar{\mathbf{x}})$ is valid in classical logic iff there is a finite set of witnesses $\bar{t}_1, \ldots, \bar{t}_n \in \mathsf{Tm}_\Sigma$ s.t. $\models \varphi(\bar{t}_1) \vee \ldots \vee \varphi(\bar{t}_n)$.

$$\mathsf{Example} \quad \models \exists \mathbf{x} \ \neg D(\mathbf{x}) \lor D(f(\mathbf{x}))$$

$$\models (\neg D(c) \lor D(f(c))) \lor (\neg D(f(c)) \lor D(f(f(c))))$$

Herbrand's witnesses

Herbrand's theorem (Simple)

A purely existential formula $\exists \bar{\mathbf{x}} \ \varphi(\bar{\mathbf{x}})$ is valid in classical logic iff there is a finite set of witnesses $\bar{t}_1, \ldots, \bar{t}_n \in \mathsf{Tm}_{\Sigma} \ s.t. \models \varphi(\bar{t}_1) \lor \ldots \lor \varphi(\bar{t}_n)$.

Example $\models \exists x \neg D(x) \lor D(f(x))$

$$\models (\neg D(c) \lor D(f(c))) \lor (\neg D(f(c)) \lor D(f(f(c))))$$

Herbrand's theorem (General)

A 1st order formula φ is valid in classical logic iff it has a Herbrand proof.

Example
$$\models \exists x \forall y, \neg D(x) \lor D(y)$$
 (DF)

A proof for DF:

Herbrand proofs: Miller's **expansion trees**

Herbrand's theorem (Miller, 1987)

A 1st order formula φ is valid in classical logic iff it has an expansion tree.

Example
$$\models \exists x \forall y, \neg D(x) \lor D(y)$$
 (DF)

An expansion tree for DF:

$$\exists x \forall y \neg D(x) \lor D(y)$$

$$x := c$$

$$\forall y \neg D(c) \lor D(y) \quad \forall z \neg D(y) \lor D(z)$$

$$y \mid \qquad \qquad | z$$

$$\neg D(c) \lor D(y) \quad \neg D(y) \lor D(z)$$

Herbrand proofs: Miller's expansion trees

Herbrand's theorem (Miller, 1987)

A 1st order formula φ is valid in classical logic iff it has an expansion tree.

Example
$$\models \exists x \forall y, \neg D(x) \lor D(y)$$
 (DF)

An expansion tree for DF:

acyclicity

validity

$$\models (\neg D(c) \lor D(y)) \lor (\neg D(y) \lor D(z))$$

Herbrand proofs: Miller's expansion trees

Herbrand's theorem (Miller, 1987)

A 1st order formula φ is valid in classical logic iff it has an expansion tree.

Proof: By translation from the cut-free sequent calculus. → not compositional.

Example
$$\models \exists x \forall y, \neg D(x) \lor D(y)$$
 (DF)

An expansion tree for DF:

acyclicity

validity

$$\models (\neg D(c) \lor D(y)) \lor (\neg D(y) \lor D(z))$$

Toward compositionality?

Question: find a composable notion of expansion tree/Herbrand proof?

Syntactic approaches: Heijltjes, McKinley, Hetzl and Weller, via notions of Herbrand proofs with cuts.

Contribution (semantic approach): Expansion trees as strategies in a concurrent game model (categories of winning Σ -strategies).

Herbrand's theorem (Compositional Herbrand's theorem)

A 1st order formula φ is valid iff there is a winning Σ -strategy: σ : $\llbracket \varphi \rrbracket$.

$$\frac{\vdash \Gamma, \varphi \qquad \vdash \Delta, \varphi^{\perp}}{\vdash \Gamma, \Delta} \text{ Cut} \qquad \qquad \sigma = \sigma_1 \odot \sigma_2$$

Other related works: Games for first-order proofs (Laurent, Mimram)

Roadmap

- Herbrand's theorem, an overview
- 2 When games come into play
- Interpretation

An implicit two-player game played on the formula between ∃loïse and ∀bélard:

$$\exists x \forall y \neg D(x) \lor D(y)$$

$$x := c$$

$$\forall y \neg D(c) \lor D(y) \quad \forall z \neg D(y) \lor D(z)$$

$$y \mid \qquad \qquad | z$$

$$\neg D(c) \lor D(y) \quad \neg D(y) \lor D(z)$$

An implicit two-player game played on the formula between ∃loïse and ∀bélard:

$$\exists x \forall y \neg D(x) \lor D(y)$$

$$x := c$$

$$\forall y \neg D(c) \lor D(y) \quad \forall z \neg D(y) \lor D(z)$$

$$y \mid \qquad \qquad \qquad | z$$

$$\neg D(c) \lor D(y) \qquad \neg D(y) \lor D(z)$$

An interpretation of formulas as games and proofs as winning Σ -strategies:

An implicit two-player game played on the formula between ∃loïse and ∀bélard:

$$\exists x \forall y \neg D(x) \lor D(y)$$

$$x := c$$

$$\forall y \neg D(c) \lor D(y) \quad \forall z \neg D(y) \lor D(z)$$

$$y \mid \qquad \qquad \qquad | z$$

$$\neg D(c) \lor D(y) \qquad \neg D(y) \lor D(z)$$

An interpretation of formulas as games and proofs as winning Σ -strategies:

→ A causal game model

An implicit two-player game played on the formula between ∃loïse and ∀bélard:

$$\exists x \forall y \neg D(x) \lor D(y)$$

$$x := c$$

$$\forall y \neg D(c) \lor D(y) \quad \forall z \neg D(y) \lor D(z)$$

$$y \mid \qquad \qquad \qquad | z$$

$$\neg D(c) \lor D(y) \qquad \neg D(y) \lor D(z)$$

An interpretation of formulas as games and proofs as winning Σ -strategies:

→ A causal game model with term labelling

An implicit two-player game played on the formula between ∃loïse and ∀bélard:

$$\exists x \forall y \neg D(x) \lor D(y)$$

$$x := c$$

$$\forall y \neg D(c) \lor D(y) \quad \forall z \neg D(y) \lor D(z)$$

$$y \mid \qquad \qquad \qquad | z$$

$$\neg D(c) \lor D(y) \qquad \neg D(y) \lor D(z)$$

An interpretation of formulas as games and proofs as winning Σ -strategies:

→ A causal game model with term labelling and winning conditions.

Concurrent arenas and strategies [RW]

Definition

A arena is a triple $(|A|, \leq_A, pol_A)$, with:

- $(|A|, \leq_A)$ a causal relation, i.e. a **partial order** with *finite* histories
- $\operatorname{pol}_A: |A| \to \{\forall, \exists\}$

Notation: C(A) is the set of configurations (down-closed subsets of A).

Definition

Strategies σ : A are certain $(|\sigma|, \leq_{\sigma})$, s.t. $\sigma \subseteq A$ and $\mathcal{C}(\sigma) \subseteq \mathcal{C}(A)$

The arena for $\exists x \ \forall y \ \psi(x,y)$

$$\exists_1 \quad \dots \quad \exists_n \quad \dots$$

A strategy on $\exists x \ \forall y \ \psi(x,y)$

A (compact closed) category of arenas

Constructions on arenas.

- If A is an arena, A^{\perp} has the same structure with polarity inverted.
- If A, B are arenas, $A \parallel B$ has events |A| + |B|, and components inherited.

Definition

A strategy from A to B is $\sigma : A^{\perp} \parallel B$, written $\sigma : A \longrightarrow B$.

Composition $\tau \odot \sigma : A \longrightarrow C$ is defined for all $\sigma : A \longrightarrow B, \tau : B \longrightarrow C$.

∃5

Composition (projection):

→ A compact closed category CG.

Σ-strategies on arenas

A strategy, plus free variables (∀bélard's moves) and terms (∃loïse's moves).

$$\exists_{1}^{c} \quad \exists_{2}^{\forall_{1}}$$

$$\forall_{1}^{\forall_{1}} \quad \forall_{2}^{\forall_{2}}$$

Definition

A Σ -strategy on A is a strategy $\sigma:A$, with a labeling function

$$\lambda_{\sigma}: |\sigma| \to \mathsf{Tm}_{\Sigma}(|\sigma|)$$

such that:

$$\begin{array}{lcl} \forall \mathbf{a}^{\forall} \in |\sigma|, & \lambda_{\sigma}(\mathbf{a}) & = & \mathbf{a} \\ \forall \mathbf{a}^{\exists} \in |\sigma|, & \lambda_{\sigma}(\mathbf{a}) & \in & \mathsf{Tm}_{\Sigma}([\mathbf{a}]_{\sigma}^{\forall}) \end{array}$$

where
$$[a]_{\sigma}^{\forall} = \{a' \in |\sigma| \mid a' \leq_{\sigma} a \& \operatorname{pol}_{A}(a') = \forall\}.$$

$$\circ_1 \quad \doteq \quad c \\
\circ_1 \quad \doteq \quad \circ$$

$$\begin{array}{cccc}
\circ_1 & \doteq & c \\
\circ_1 & \doteq & \circ_2 \\
\circ_3 & \doteq & g(\circ_2) \\
\circ_4 & \doteq & h(\circ_2)
\end{array}$$

$$\begin{array}{cccc}
\circ_1 & = & c \\
\circ_1 & \doteq & \circ_2 \\
\circ_3 & \doteq & g(\circ_2) \\
\circ_4 & \doteq & h(\circ_2) \\
f(\circ_3, \circ_4) & \doteq & \exists_5
\end{array}$$

$$\left\{\begin{array}{cccc} \circ_1 & \doteq & c \\ \circ_1 & \doteq & \circ_2 \\ \circ_3 & \doteq & g(\circ_2) \\ \circ_4 & \doteq & h(\circ_2) \\ f(\circ_3, \circ_4) & \doteq & \exists_5 \end{array}\right\}$$

$$\left\{\begin{array}{cccc} \circ_1 & \doteq & c \\ \circ_1 & \doteq & \circ_2 \\ \circ_3 & \doteq & g(\circ_2) \\ \circ_4 & \doteq & h(\circ_2) \\ f(\circ_3, \circ_4) & \doteq & \exists_5 \end{array}\right\} \quad \text{with m.g.u.} \quad \left\{$$

$$\left\{ \begin{array}{cccc} \circ_1 & \doteq & c \\ \circ_1 & \doteq & \circ_2 \\ \circ_3 & \doteq & g(\circ_2) \\ \circ_4 & \doteq & h(\circ_2) \\ f(\circ_3, \circ_4) & \doteq & \exists_5 \end{array} \right\} \quad \text{with m.g.u.} \quad \left\{ \begin{array}{cccc} \circ_1 & \mapsto & c \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right\}$$

$$\left\{ \begin{array}{cccc} \circ_1 & \doteq & c \\ \circ_1 & \doteq & \circ_2 \\ \circ_3 & \doteq & g(\circ_2) \\ \circ_4 & \doteq & h(\circ_2) \\ f(\circ_3, \circ_4) & \doteq & \exists_5 \end{array} \right\} \quad \text{with m.g.u.} \quad \left\{ \begin{array}{cccc} \circ_1 & \mapsto & c \\ \circ_2 & \mapsto & c \end{array} \right.$$

$$\left\{
\begin{array}{cccc}
\circ_1 & \doteq & c \\
\circ_1 & \doteq & \circ_2 \\
\circ_3 & \doteq & g(\circ_2) \\
\circ_4 & \doteq & h(\circ_2) \\
f(\circ_3, \circ_4) & \doteq & \exists_5
\end{array}\right\} \quad \text{with m.g.u.} \quad
\left\{
\begin{array}{cccc}
\circ_1 & \mapsto & c \\
\circ_2 & \mapsto & c \\
\circ_3 & \mapsto & g(c)
\end{array}\right\}$$

$$\left\{
\begin{array}{cccc}
\circ_1 & \doteq & c \\
\circ_1 & \doteq & \circ_2 \\
\circ_3 & \doteq & g(\circ_2) \\
\circ_4 & \doteq & h(\circ_2) \\
f(\circ_3, \circ_4) & \doteq & \exists_5
\end{array}\right\} \text{ with m.g.u.}
\left\{
\begin{array}{cccc}
\circ_1 & \mapsto & c \\
\circ_2 & \mapsto & c \\
\circ_3 & \mapsto & g(c) \\
\circ_4 & \mapsto & h(c)
\end{array}\right\}$$

$$\left\{ \begin{array}{cccc} \circ_1 & \doteq & c \\ \circ_1 & \doteq & \circ_2 \\ \circ_3 & \doteq & g(\circ_2) \\ \circ_4 & \doteq & h(\circ_2) \\ f(\circ_3, \circ_4) & \doteq & \exists_5 \end{array} \right\} \quad \text{with m.g.u.} \quad \left\{ \begin{array}{cccc} \circ_1 & \mapsto & c \\ \circ_2 & \mapsto & c \\ \circ_3 & \mapsto & g(c) \\ \circ_4 & \mapsto & h(c) \\ \exists_5 & \mapsto & f(g(c), h(c)) \end{array} \right\}$$

$$\begin{pmatrix} \bigvee_{1} & \bigvee_{4} \\ \ni_{2} \bigvee_{1} \\ \bigvee_{4} \\ \bigvee_{3} \\ & & \\ \ni_{5} f(\forall_{3}, \forall_{4}) \end{pmatrix} \otimes \begin{pmatrix} \exists_{1}^{c} \\ \downarrow \\ \bigvee_{2} \\ & \\ \exists_{3} g(\forall_{2}) \\ \exists_{4} h(\forall_{2}) \end{pmatrix} = \begin{pmatrix} \circ_{1}^{c} \\ \downarrow \\ \circ_{2}^{c} \\ \circ_{3} g(c) \\ \circ_{4} h(c) \\ & \\ \vdots \\ \circ_{5} f(g(c), h(c)) \end{pmatrix}$$

$$\left\{ \begin{array}{cccc} \circ_1 & \doteq & c \\ \circ_1 & \doteq & \circ_2 \\ \circ_3 & \doteq & g(\circ_2) \\ \circ_4 & \doteq & h(\circ_2) \\ f(\circ_3, \circ_4) & \doteq & \exists_5 \end{array} \right\} \quad \text{with m.g.u.} \quad \left\{ \begin{array}{cccc} \circ_1 & \mapsto & c \\ \circ_2 & \mapsto & c \\ \circ_3 & \mapsto & g(c) \\ \circ_4 & \mapsto & h(c) \\ \exists_5 & \mapsto & f(g(c), h(c)) \end{array} \right\}$$

$$\begin{pmatrix} \bigvee_{1} & \bigvee_{4} \\ \bigvee_{2}^{\vee_{1}} \\ \bigvee_{3} & \bigvee_{3} \\ \downarrow_{5}^{f(\forall_{3},\forall_{4})} \end{pmatrix} \odot \begin{pmatrix} \exists_{1}^{c} \\ \downarrow \\ \bigvee_{2} \\ \vdots \\ \exists_{3}^{g(\forall_{2})} \exists_{4}^{h(\forall_{2})} \end{pmatrix} =$$

$$\exists_{5}^{f(g(c),h(c))}$$

$$\left\{ \begin{array}{cccc} \circ_1 & \doteq & c \\ \circ_1 & \doteq & \circ_2 \\ \circ_3 & \doteq & g(\circ_2) \\ \circ_4 & \doteq & h(\circ_2) \\ f(\circ_3, \circ_4) & \doteq & \exists_5 \end{array} \right\} \quad \text{with m.g.u.} \quad \left\{ \begin{array}{cccc} \circ_1 & \mapsto & c \\ \circ_2 & \mapsto & c \\ \circ_3 & \mapsto & g(c) \\ \circ_4 & \mapsto & h(c) \\ \exists_5 & \mapsto & f(g(c), h(c)) \end{array} \right\}$$

Same causal structure, with terms.

$$\begin{pmatrix} \bigvee_{1} & \bigvee_{4} \\ \bigvee_{3} & \bigvee_{4} \\ \bigvee_{5} & \bigvee_{5} & \bigvee_{5} & \bigvee_{6} \\ \bigvee_{5} & \bigvee_{5} & \bigvee_{6} & \bigvee_{7} & \bigvee_{7} \\ \bigvee_{7} & \bigvee$$

$$\left\{ \begin{array}{cccc} \circ_1 & \doteq & c \\ \circ_1 & \doteq & \circ_2 \\ \circ_3 & \doteq & g(\circ_2) \\ \circ_4 & \doteq & h(\circ_2) \\ f(\circ_3, \circ_4) & \doteq & \exists_5 \end{array} \right\} \quad \text{with m.g.u.} \quad \left\{ \begin{array}{cccc} \circ_1 & \mapsto & c \\ \circ_2 & \mapsto & c \\ \circ_3 & \mapsto & g(c) \\ \circ_4 & \mapsto & h(c) \\ \exists_5 & \mapsto & f(g(c), h(c)) \end{array} \right\}$$

 \rightarrow A new compact closed category Σ -CG.

Example of winning conditions

Consider the Σ -strategy $\sigma : [\exists x \ \forall y \ \neg D(x) \lor D(y)]$ over DF

Validity in expansion trees:

$$\models (\neg D(c) \lor D(\forall_1)) \lor (\neg D(\forall_1) \lor D(\forall_2))$$

Example of winning conditions

Consider the Σ -strategy $\sigma : \llbracket \exists x \ \forall y \ \neg D(x) \lor D(y) \rrbracket$ over DF

Validity in expansion trees:

$$\models (\neg D(c) \lor D(\forall_1)) \quad \lor \quad (\neg D(\forall_1) \lor D(\forall_2))$$

Can be decomposed into

$$\models \quad (\neg D(\exists_1) \vee D(\forall_1)) \quad \vee \quad (\neg D(\exists_2) \vee D(\forall_2)) \quad \left[\exists_1 \mapsto c; \exists_2 \mapsto \forall_1\right]$$

Example of winning conditions

Consider the Σ -strategy $\sigma : \llbracket \exists x \ \forall y \ \neg D(x) \lor D(y) \rrbracket$ over DF

Validity in expansion trees:

$$\models (\neg D(c) \lor D(\forall_1)) \quad \lor \quad (\neg D(\forall_1) \lor D(\forall_2))$$

Can be decomposed into

$$\models \underbrace{(\neg D(\exists_1) \lor D(\forall_1)) \lor (\neg D(\exists_2) \lor D(\forall_2))}_{\textbf{Winning conditions}, \mathcal{W}_{DF}(|\sigma|)} \underbrace{[\exists_1 \mapsto c; \exists_2 \mapsto \forall_1]}_{\textbf{Labelling}, \lambda_{\sigma}}$$

Definition

A game A is an arena A, together with winning conditions:

$$W_A: (x \in C(A)) \mapsto \mathsf{QF}_{\Sigma}(x)$$

where $\operatorname{QF}_{\Sigma}(x)$ is the set of **quantifier-free** formulas on signature Σ and free variables in x, extended with **countable** conjunctions and disjunctions.

Definition. σ is a winning on x if $\models \mathcal{W}_{A}(x)[\lambda_{\sigma}]$.

$$\exists_1 \quad \exists_2 \quad \dots \\ \forall_1 \quad \forall_2$$

14/18

Winning conditions on arenas

Definition

A game A is an arena A, together with winning conditions:

$$W_A: (x \in C(A)) \mapsto \mathsf{QF}_{\Sigma}(x)$$

where $\operatorname{QF}_{\Sigma}(x)$ is the set of **quantifier-free** formulas on signature Σ and free variables in x, extended with **countable** conjunctions and disjunctions.

Definition. σ is a winning on x if $\models \mathcal{W}_A(x)[\lambda_{\sigma}]$.

Definition

A game A is an arena A, together with winning conditions:

$$W_A: (x \in C(A)) \mapsto \mathsf{QF}_{\Sigma}(x)$$

where $\mathsf{QF}_\Sigma(x)$ is the set of **quantifier-free** formulas on signature Σ and free variables in x, extended with **countable** conjunctions and disjunctions.

Definition. σ is a winning on x if $\models \mathcal{W}_A(x)[\lambda_{\sigma}]$.

To each configuration of $[\exists x \ \forall y \ \neg D(x) \lor D(y)]$, we associate a formula:

 \exists_1

.

Definition

A game A is an arena A, together with winning conditions:

$$W_A: (x \in C(A)) \mapsto \mathsf{QF}_{\Sigma}(x)$$

where $\mathsf{QF}_\Sigma(x)$ is the set of **quantifier-free** formulas on signature Σ and free variables in x, extended with **countable** conjunctions and disjunctions.

Definition. σ is a winning on x if $\models \mathcal{W}_{A}(x)[\lambda_{\sigma}]$.

$$\exists_{1} \\ \mapsto \\ \neg D(\exists_{1}) \lor D(\forall_{1})$$

Definition

A game A is an arena A, together with winning conditions:

$$W_A: (x \in C(A)) \mapsto \mathsf{QF}_{\Sigma}(x)$$

where $\mathsf{QF}_\Sigma(x)$ is the set of **quantifier-free** formulas on signature Σ and free variables in x, extended with **countable** conjunctions and disjunctions.

Definition. σ is a winning on x if $\models \mathcal{W}_{A}(x)[\lambda_{\sigma}]$.

$$\begin{array}{ccc} \exists_1 & \exists_2 \\ & & \\ & & \\ & & \\ \forall_1 & & \\ \end{array} \qquad \mapsto \qquad (\neg D(\exists_1) \lor D(\forall_1)) \quad \lor \quad \top$$

Definition

A game A is an arena A, together with winning conditions:

$$W_A: (x \in C(A)) \mapsto \mathsf{QF}_{\Sigma}(x)$$

where $\mathsf{QF}_\Sigma(x)$ is the set of **quantifier-free** formulas on signature Σ and free variables in x, extended with **countable** conjunctions and disjunctions.

Definition. σ is a winning on x if $\models \mathcal{W}_{A}(x)[\lambda_{\sigma}]$.

Definition

A game A is an arena A, together with winning conditions:

$$W_A: (x \in C(A)) \mapsto \mathsf{QF}_{\Sigma}(x)$$

where $\mathsf{QF}_\Sigma(x)$ is the set of **quantifier-free** formulas on signature Σ and free variables in x, extended with **countable** conjunctions and disjunctions.

Definition. σ is a winning on x if $\models \mathcal{W}_{A}(x)[\lambda_{\sigma}]$.

Definition

A game A is an arena A, together with winning conditions:

$$W_A: (x \in C(A)) \mapsto \mathsf{QF}_{\Sigma}(x)$$

where $\mathsf{QF}_\Sigma(x)$ is the set of **quantifier-free** formulas on signature Σ and free variables in x, extended with **countable** conjunctions and disjunctions.

Definition. σ is a winning on x if $\models \mathcal{W}_{A}(x)[\lambda_{\sigma}]$.

Definition

A game A is an arena A, together with winning conditions:

$$W_A: (x \in C(A)) \mapsto \mathsf{QF}_{\Sigma}(x)$$

where $\operatorname{QF}_{\Sigma}(x)$ is the set of **quantifier-free** formulas on signature Σ and free variables in x, extended with **countable** conjunctions and disjunctions.

Definition

A Σ -strategy $\sigma: A$ is winning on $\mathcal{W}_{\mathcal{A}}$ iff for all $x \in \mathcal{C}^{\infty}(\sigma)$ \exists -maximal,

$$\models W_A(x)[\lambda_\sigma]$$

- → Two new constructors on games: ⊗ (conjunction) and ¾ (disjunction)
- → Winning strategies $\sigma: \mathcal{A}^{\perp} \ \ \mathfrak{P}$ are stable under composition (*-autonomous category).

Roadmap

- Herbrand's theorem, an overview
- 2 When games come into play
- Interpretation

Propositional connectives (MLL *-autonomous model)

Quantifiers

$$[\![\exists x \varphi]\!]_{\mathcal{V}} = \exists_{\mathbf{x}}. [\![\varphi]\!]_{\mathcal{V} \uplus \{x\}} \qquad [\![\forall x \varphi]\!]_{\mathcal{V}} = \forall_{\mathbf{x}}. [\![\varphi]\!]_{\mathcal{V} \uplus \{x\}}$$

→ A model for proofs of first order MLL

Propositional connectives (MLL *-autonomous model)

Quantifiers and exponentials

$$[\exists x \varphi]_{\mathcal{V}} = ? \exists_{x}. [\varphi]_{\mathcal{V} \oplus \{x\}}$$

$$[\forall x \varphi]_{\mathcal{V}} = \forall_{x}. [\varphi]_{\mathcal{V} \oplus \{x\}}$$

$$? A = \|_{n \in \omega} A$$

$$\mathcal{W}_{?A}(\|_{i} x_{i}) = \bigvee_{i} \mathcal{W}_{A}(x_{i})$$

→ A model for proofs of first order MLL

Propositional connectives (MLL *-autonomous model)

Quantifiers and exponentials

$$[\![\exists x \varphi]\!]_{\mathcal{V}} = ? \exists_{x}. [\![\varphi]\!]_{\mathcal{V} \uplus \{x\}}$$

$$[\![\forall x \varphi]\!]_{\mathcal{V}} = ! \forall_{x}. [\![\varphi]\!]_{\mathcal{V} \uplus \{x\}}$$

$$? A = \|_{n \in \omega} A$$

$$! A = \|_{n \in \omega} A$$

$$\mathcal{W}_{?A}(\|_{i} x_{i}) = \bigvee_{i} \mathcal{W}_{A}(x_{i})$$

$$\mathcal{W}_{!A}(\|_{i} x_{i}) = \bigwedge_{i} \mathcal{W}_{A}(x_{i})$$

→ A model for proofs of first order MLL

Propositional connectives (MLL *-autonomous model)

Quantifiers and exponentials

$$[\exists x \varphi]_{\mathcal{V}} = ? \exists_{x}. [\varphi]_{\mathcal{V}_{\psi}\{x\}}$$

$$[\forall x \varphi]_{\mathcal{V}} = ! \forall_{x}. [\varphi]_{\mathcal{V}_{\psi}\{x\}}$$

$$? A = \|_{n \in \omega} A$$

$$! A = \|_{n \in \omega} A$$

$$\mathcal{W}_{?A}(\|_{i} x_{i}) = \bigvee_{i} \mathcal{W}_{A}(x_{i})$$

$$\mathcal{W}_{!A}(\|_{i} x_{i}) = \bigwedge_{i} \mathcal{W}_{A}(x_{i})$$

→ A model for proofs of first order MLL + contraction (= first order LK)

Herbrand's theorem

Herbrand's theorem (Compositional Herbrand's theorem)

A 1st order formula φ is valid iff there is a winning Σ -strategy: $\sigma : \llbracket \varphi \rrbracket$.

On cut free proofs ~ Expansion trees with explicit acyclicity witness

Conclusion

Herbrand's theorem (Compositional Herbrand's theorem)

A 1st order formula φ is valid iff there is a winning Σ -strategy: $\sigma : \llbracket \varphi \rrbracket$.

 Games_{Σ} : a concurrent game model with terms and $\mathsf{winnings}$

Proof:

- a framework to interpret first order proofs (with extra constructors \forall , \exists , !, ?)
 - → Does not preserve cuts elimination in LK (by necessity)
 - → Reflects some dynamics of LK: infinite strategies.

Future investigation: a finatary composition of strategies?

Herbrand's theorem, and Herbrand proofs

Herbrand's theorem (Buss?)

A formula φ is valid if and only if it has a Herbrand proof, i.e. if it has a valid substitution of a prenexification of a \vee -expansion.

$$\frac{ \begin{matrix} \vdash \neg D(c) \lor D(y), \ \neg D(y) \lor D(z) \end{matrix} }{ \begin{matrix} \vdash \neg D(c) \lor D(y), \exists x \forall y, \ \neg D(x) \lor D(y) \end{matrix} } \begin{matrix} \vdash \neg D(c) \lor D(y), \exists x \forall y, \ \neg D(x) \lor D(y) \end{matrix} }{ \begin{matrix} \vdash \exists x \forall y \ \neg D(x) \lor D(y) \end{matrix} } \begin{matrix} \vdash \exists x \forall y \ \neg D(x) \lor D(y) \end{matrix} } \begin{matrix} \vdash \neg D(x) \lor D(y) \end{matrix} \\ \begin{matrix} \vdash \neg D(c) \lor D(y), \exists x \forall y \ \neg D(x) \lor D(y) \end{matrix} \\ \begin{matrix} \vdash \neg D(c) \lor D(y), \exists x \forall y \ \neg D(x) \lor D(y) \end{matrix} \end{matrix} \begin{matrix} \vdash \neg D(x) \lor D(y) \end{matrix} \begin{matrix} \vdash \neg D(x) \lor D(x) \end{matrix} \begin{matrix} \vdash \neg D(x) \end{matrix} \begin{matrix} \vdash \neg D(x) \lor D(x) \end{matrix} \begin{matrix} \vdash \neg D(x) \lor D(x) \end{matrix} \begin{matrix} \vdash \neg D(x)$$

• v-expansion.

$$(\exists \mathrm{x}_1 \forall \mathrm{y}_1 \ \neg D(\mathrm{x}_1) \lor D(\mathrm{y}_2)) \quad \lor \quad (\exists \mathrm{x}_2 \forall \mathrm{y}_2 \ \neg D(\mathrm{x}_2) \lor D(\mathrm{y}_2))$$

Prenexification.

$$\exists x_1 \forall y_1 \exists x_2 \forall y_2 \ (\neg D(x_1) \lor D(y_1)) \quad \lor \quad (\neg D(x_2) \lor D(y_2))$$

Herbrand's theorem, and Herbrand proofs

Herbrand's theorem (Buss?)

A formula φ is valid if and only if it has a Herbrand proof, i.e. if it has a valid substitution of a prenexification of a \vee -expansion.

$$\begin{array}{|c|c|} \hline \\ \hline \vdash \neg D(c) \lor D(y), \ \neg D(y) \lor D(z)) \\ \hline \vdash \neg D(c) \lor D(y), \exists x \forall y, \ \neg D(x) \lor D(y) \\ \hline \vdash \exists x \forall y \ \neg D(x) \lor D(y), \exists x \forall y \ \neg D(x) \lor D(y) \\ \hline \vdash \exists x \forall y \ \neg D(x) \lor D(y) \\ \hline \end{matrix} \begin{array}{|c|c|c|} \exists J_{I}, x := c, \forall_{I} \\ \exists J_{I}, x := y, \forall_{I} \\ \hline CONTRACTION \\ \hline \end{array}$$

• v-expansion.

$$(\exists \mathbf{x}_1 \forall \mathbf{y}_1 \ \neg D(\mathbf{x}_1) \lor D(\mathbf{y}_2)) \quad \lor \quad (\exists \mathbf{x}_2 \forall \mathbf{y}_2 \ \neg D(\mathbf{x}_2) \lor D(\mathbf{y}_2))$$

Prenexification.

$$\exists x_1 \forall y_1 \exists x_2 \forall y_2 \ (\neg D(x_1) \lor D(y_1)) \quad \lor \quad (\neg D(x_2) \lor D(y_2))$$

But can we have a more intrinsic/geometric representation of Herbrand proofs?

Composition of plain strategies

Interaction. An elementary event structure is a partial order $(|\mathbf{q}|, \leq_{\mathbf{q}})$ such that for any $e \in |\mathbf{q}|$, $[e]_{\mathbf{q}}$ is finite.

Proposition

For \mathbf{q}, \mathbf{q}' , we say that

$$\mathbf{q} \leqslant \mathbf{q}' \quad \Leftrightarrow \quad |\mathbf{q}| \subseteq |\mathbf{q}'| \ \& \ \mathcal{C}^{\infty}(\mathbf{q}) \subseteq \mathcal{C}^{\infty}(\mathbf{q}')$$

Then any two \mathbf{q} , \mathbf{q}' have a greatest lower bound (meet-semilattice).

For $\sigma: A^{\perp} \parallel B$ and $\tau: B^{\perp} \parallel C$, define (ignoring polarities)

$$\tau \circledast \sigma = (\sigma \parallel C) \land (A \parallel \tau)$$

Composition. Define

$$\tau \odot \sigma = \tau \circledast \sigma \downarrow A, C : A \rightarrow C$$

This is composition in Rideau and Winskel's concurrent games, simplified.

$$\forall I \ \frac{\vdash^{\mathcal{V} \uplus \{x\}} \Gamma, \varphi}{\vdash^{\mathcal{V}} \Gamma, \forall x. \ \varphi} \ x \notin \mathcal{V}, x \notin \mathrm{fv}(\Gamma)$$

$$\sigma: [\![\Gamma]\!]_{\mathcal{V} \uplus \{x\}} \, \mathcal{R} \qquad [\![\varphi]\!]_{\mathcal{V} \uplus \{x\}}$$

$$\forall \mathbf{I} \ \frac{\vdash^{\mathcal{V} \uplus \{\mathbf{x}\}} \mathsf{\Gamma}, \varphi}{\vdash^{\mathcal{V}} \mathsf{\Gamma}, \forall \mathbf{x}. \ \varphi} \ \mathbf{x} \notin \mathcal{V}, \mathbf{x} \notin \mathsf{fv}(\mathsf{\Gamma})$$

$$\sigma: [\![\Gamma]\!]_{\mathcal{V} \uplus \{x\}} \ ^{\gamma} \ ^{\forall} x. \ [\![\varphi]\!]_{\mathcal{V} \uplus \{x\}}$$

$$\forall I \ \frac{\vdash^{\mathcal{V} \uplus \{x\}} \Gamma, \varphi}{\vdash^{\mathcal{V}} \Gamma, \forall x. \ \varphi} \ x \notin \mathcal{V}, x \notin fv(\Gamma)$$

$$\sigma: [\![\mathsf{\Gamma}]\!]_{\mathcal{V}} \qquad {}^{\mathcal{R}} \, \forall_{\mathbf{X}}. \, [\![\varphi]\!]_{\mathcal{V} \uplus \{\mathbf{x}\}}$$

All \exists^t moves where $x \in fv(t)$ are set to depend on \forall .

$$\forall I \; \frac{\vdash^{\mathcal{V} \uplus \{x\}} \; \Gamma, \varphi}{\vdash^{\mathcal{V}} \; \Gamma, \forall x. \; \varphi} \; x \notin \mathcal{V}, x \notin \mathrm{fv}(\Gamma)$$

$$\sigma: [\![\Gamma]\!]_{\mathcal{V}} \qquad \mathcal{R} \ \forall \mathbf{x}. \ [\![\varphi]\!]_{\mathcal{V} \uplus \{\mathbf{x}\}}$$

All \exists^t moves where $x \in fv(t)$ are set to depend on \forall .

The variable x is replaced by \forall in λ_{σ} .

$$\exists \mathbf{I} \ \frac{\vdash^{\mathcal{V}} \Gamma, \varphi[t/\mathbf{x}]}{\vdash^{\mathcal{V}} \Gamma, \exists \mathbf{x}. \ \varphi} \ t \in \mathsf{Tm}_{\Sigma}(\mathcal{V})$$

Composition with the winning Σ -strategy

$$u_{\mathcal{A},t}: \mathcal{A}[t/\mathrm{x}] \xrightarrow{\mathcal{V}\text{-Games}} \exists \mathrm{x} \mathcal{A}$$

playing \exists^t , then copycat on A.

$$\frac{ \begin{matrix} \vdash^{\vee} \neg D(c), D(y), \neg D(y), \forall y D(y) \\ \vdash^{\vee} \neg D(c), D(y), D(y) \Rightarrow \forall y D(y) \\ \vdash^{\vee} \neg D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \begin{matrix} \vdash^{\vee} \neg D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \begin{matrix} \vdash \neg D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \begin{matrix} \vdash D(c) \Rightarrow \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \begin{matrix} \vdash \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \end{matrix} \\ \hline \end{matrix}$$

$$\frac{ \vdash^{\vee} \neg D(c), D(y), \neg D(y), \forall y D(y) }{ \vdash^{\vee} \neg D(c), D(y), D(y) \Rightarrow \forall y D(y) } \\ \frac{ \vdash^{\vee} \neg D(c), D(y), D(y) \Rightarrow \forall y D(y) }{ \vdash^{\vee} \neg D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y)) } \\ \frac{ \vdash^{\vee} \neg D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) }{ \vdash^{\vee} \neg D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) } \\ \frac{ \vdash^{\vee} \neg D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) }{ \vdash^{\vee} \neg D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) }$$

$$\frac{\vdash^{y} \neg D(c), D(y), \neg D(y), \forall y D(y)}{\vdash^{y} \neg D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y))}$$

$$\frac{\vdash^{y} \neg D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y))}{\vdash \neg D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y))}$$

$$\frac{\vdash D(c) \Rightarrow \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y))}{\vdash \exists x (D(x) \Rightarrow \forall y D(y)), \exists x (D(x) \Rightarrow \forall y D(y))}$$

$$\frac{\vdash \exists x (D(x) \Rightarrow \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y))}{\vdash \exists x (D(x) \Rightarrow \forall y D(y))}$$

$$(\neg D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y)))$$

$$\begin{array}{c} \vdash^{y} \neg D(c), D(y), \neg D(y), \forall y D(y) \\ \hline \vdash^{y} \neg D(c), D(y), D(y) \Rightarrow \forall y D(y) \\ \hline \vdash^{y} \neg D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \vdash \neg D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \vdash D(c) \Rightarrow \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \vdash \exists x (D(x) \Rightarrow \forall y D(y)), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \vdash \exists x (D(x) \Rightarrow \forall y D(y)). \end{array}$$

$$\neg D(c) \cdot \forall y D(y) \cdot \exists x (D(x) \Rightarrow \forall y D(y))$$

$$\forall_1 \longrightarrow \exists_2^{\forall_1}$$

$$\forall_2$$

$$\begin{array}{c} \vdash^{y} \neg D(c), D(y), \neg D(y), \forall y D(y) \\ \hline \vdash^{y} \neg D(c), D(y), D(y) \Rightarrow \forall y D(y) \\ \hline \vdash^{y} \neg D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \vdash \neg D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \vdash D(c) \Rightarrow \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \vdash \exists x (D(x) \Rightarrow \forall y D(y)), \exists x (D(x) \Rightarrow \forall y D(y)) \\ \hline \vdash \exists x (D(x) \Rightarrow \forall y D(y)) \end{array}$$

$$\begin{array}{ccc} D(c) \Rightarrow & \forall \mathbf{y} D(\mathbf{y}) & \exists \mathbf{x} (D(\mathbf{x}) \Rightarrow \forall \mathbf{y} D(\mathbf{y})) \\ & & & \\$$

$\vdash^{y} \neg D(c), D(y), \neg D(y), \forall y D(y)$
$\vdash^{y} \neg D(c), D(y), D(y) \Rightarrow \forall y D(y)$
$\vdash^{y} \neg D(c), D(y), \exists x(D(x) \Rightarrow \forall y D(y))$
$\vdash \neg D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y))$
$\vdash D(c) \Rightarrow \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y))$
$\vdash \exists x (D(x) \Rightarrow \forall y D(y)), \exists x (D(x) \Rightarrow \forall y D(y))$
$\vdash \exists x (D(x) \Rightarrow \forall y D(y))$

$$\frac{\vdash^{y} - D(c), D(y), \neg D(y), \forall y D(y)}{\vdash^{y} - D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y))}$$

$$\frac{\vdash^{y} - D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y))}{\vdash^{y} - D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y))}$$

$$\frac{\vdash^{y} - D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y))}{\vdash^{y} - D(c), \forall y D(y), \exists x (D(x) \Rightarrow \forall y D(y))}$$

$$\frac{\vdash^{y} - D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y))}{\vdash^{y} - D(c), D(y), \exists x (D(x) \Rightarrow \forall y D(y))}$$

$$\frac{\exists^{c} \\ \downarrow^{y} \\ \downarrow^$$

Composition of winning strategies

Constructions. If A is a game, A^{\perp} has

$$\mathcal{W}_{\mathcal{A}^{\perp}}(x) = \mathcal{W}_{\mathcal{A}}(x)^{\perp}$$

If A and B are games with winnings, we define two games with arena $A \parallel B$:

$$\mathcal{W}_{\mathcal{A}\otimes\mathcal{B}}(x_A \parallel x_B) = \mathcal{W}_{\mathcal{A}}(x_A) \wedge \mathcal{W}_{\mathcal{B}}(x_B)
\mathcal{W}_{\mathcal{A}\mathcal{B}}(x_A \parallel x_B) = \mathcal{W}_{\mathcal{A}}(x_A) \vee \mathcal{W}_{\mathcal{B}}(x_B)$$

with units 1 = $(\varnothing, \mathcal{W}_1(\varnothing) = \top)$ $\bot = (\varnothing, \mathcal{W}_\bot(\varnothing) = \bot)$

Winning strategies from A to B are winning Σ -strategies

$$\sigma:\mathcal{A}^{\perp} \mathfrak{P} \mathcal{B}$$

Lemma: \otimes , ${}^{?}$, ${}^{\perp}$, \odot preserve winning.

Proposition

There is a \star -autonomous category Games $_{\Sigma}$ with games as objects, and winning Σ -strategies as morphisms.