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Roadmap

@ Herbrand's theorem, an overview
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Herbrand's witnesses

Herbrand's theorem (Simple)

A purely existential formula 3x ©(X) is valid in classical logic iff there is a finite
set of witnesses ti,...,t, € Tmy s.t. = o(f1) v ... v o(f).

Example = 3x —D(x) v D(f(x)) J

= (=D(c) v D(f(c))) v (=D(f(c)) v D(f(f(c))))



Herbrand's witnesses

Herbrand's theorem (Simple)

A purely existential formula 3x ¢(X) is valid in classical logic iff there is a finite
set of witnesses ti,...,t, € Tmy s.t. = o(f1) v ... v o(f).

Example = 3x —D(x) v D(f(x)) )

= (=D(c) v D(f(c))) v (=D(f(c)) v D(f(f(c))))

Prop. TAuTOLOGY
J;,x:=f(c)

F —D(c) v D(f(¢)), —=D(f(c)) v D(f(f(c)))
F —D(c) v D(f(c)), Ix —=D(x) v D(f(x))
F 3x =D(x) v D(f(x)), 3x =D(x) v D(f(x))
F3x =D(x) v D(f(x))

J,x:=c

CONTRACTION
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Herbrand proofs

Herbrand'’s theorem (General)
A 1° order formula ¢ is valid in classical logic iff it has a Herbrand proof. J
Example k= 3xVy, —=D(x) v D(y) (DF) J

A proof for DF:

ProP. TAUTOLOGY

= —D(c) v D(y), —D(y) v D(2))
F —D(c) v D(y),3xVy, —=D(x) v D(y)
F 3IxVy —D(x) v D(y),3xVy —=D(x) v D(y)
F 3IxVy —D(x) v D(y)

Ix=y,V

dy,x:=¢,V,

CONTRACTION
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Herbrand proofs: Miller's expansion trees

Herbrand's theorem (Miller, 1987) J

A 1°" order formula ¢ is valid in classical logic iff it has an expansion tree.

Example |=IxVy, =D(x) v D(y) (DF) )

An expansion tree for DF:

IxVy—D(x) v DSy)
Vy=D(c) v D(y) Vz—D(y) v D(z)

—D(c) v D(y) —D(y) v D(z)

z




Herbrand proofs: Miller's expansion trees
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Herbrand's theorem (Miller, 1987)
A 1°" order formula ¢ is valid in classical logic iff it has an expansion tree. J
Example = 3xVy, —=D(x) v D(y) (DF) J

An expansion tree for DF:

acyclicity
IxVy—D(x) v D(y)
x:7 X=y
Vy=D(c) v D(y) Vz—D(y) v D(z)
y ‘ z validity

—D(c) v D(y) —D(y) v D(z)

3¢ 3

v

Z

= (=D(¢) v D(y)) v (=D(y) v D(z))



Herbrand proofs: Miller's expansion trees

Herbrand's theorem (Miller, 1987)
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A 1°" order formula ¢ is valid in classical logic iff it has an expansion tree. J

Proof: By translation from the cut-free sequent calculus. — not compositional.

Example = 3xVy, —=D(x) v D(y) (DF) J
An expansion tree for DF: .
acyclicity
IxVy—D(x) v D(y) ¥
Xi=C Xi=y ‘L /$
/////// \\\\\\\ 5 5
Vy=D(c) v D(y) Vz—D(y) v D(z)
y z validity

—D(c) v D(y) —D(y) v D(z)

= (=D(c) v D(y)) v

(=D(y) v D(2))
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Toward compositionality?

Question: find a composable notion of expansion tree/Herbrand proof?

Syntactic approaches: Heijltjes, McKinley, Hetzl and Weller, via notions of
Herbrand proofs with cuts.

Contribution (semantic approach): Expansion trees as strategies in a
concurrent game model (categories of winning X-strategies).

Herbrand’s theorem (Compositional Herbrand’s theorem)
o : ¢l J

A 1°" order formula ¢ is valid iff there is a winning ¥ -strategy:

o FAp"
Cur
FIA =010

Other related works: Games for first-order proofs (Laurent, Mimram)
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Roadmap

© When games come into play
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From expansion trees to concurrent strategies

An implicit two-player game played on the formula between Jloise and Ybélard:

IxVy—D(x) v D(y)
X.V Y\
Vy—=D(c) v D(y) VYz—D(y) v D(z)

D(c) v D(y) —D(y) v D(2)

z
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From expansion trees to concurrent strategies

An implicit two-player game played on the formula between Jloise and Ybélard:

IxVy—D(x) v D7 y)
x:7 Y\
Vy—=D(c) v D(y) Vz—D(y) v D(z)

—D(c) v D(y)  —D(y) v D(2)

z

An interpretation of formulas as games and proofs as winning X-strategies:

¥ W I 3,

v

Vit vy V1 Vn
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From expansion trees to concurrent strategies

An implicit two-player game played on the formula between Jloise and Ybélard:

IxVy—D(x) v D7 y)
x:7 Y\
Vy—=D(c) v D(y) Vz—D(y) v D(z)

—D(c) v D(y)  —D(y) v D(2)

z

An interpretation of formulas as games and proofs as winning X-strategies:
&N 3, J1 .. 3n
vV, Y, V1 i

— A causal game model
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From expansion trees to concurrent strategies

An implicit two-player game played on the formula between Jloise and Ybélard:

IxVy—D(x) v D7 y)
x:7 Y\
Vy—=D(c) v D(y) Vz—D(y) v D(z)

—D(c) v D(y)  —D(y) v D(2)

z

An interpretation of formulas as games and proofs as winning X-strategies:

¥ W 3 . 3,
4
vyt vy V1 Vn

— A causal game model with term labelling
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From expansion trees to concurrent strategies

An implicit two-player game played on the formula between Jloise and Ybélard:

IxVy—D(x) v D7 y)
x:7 \7\
Vy—=D(c) v D(y) Vz—D(y) v D(z)

—D(c) v D(y)  —D(y) v D(2)

z

An interpretation of formulas as games and proofs as winning X-strategies:

¥ W 3 . 3,
4
vyt vy V1 Vn

— A causal game model with term labelling and winning conditions.
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Concurrent arenas and strategies [RW]

Definition

A arena is a triple (|A], <a,pol,), with:
o (JA|,<a) a causal relation, i.e. a partial order with finite histories
@ pol, : |A| — {V,3}

Notation: C(A) is the set of configurations (down-closed subsets of A).

Definition
Strategies o : A are certain (|o],<,), s.t. 0 € A and C(o) € C(A) J

A strat Ix V
The arena for 3x Vy 9 (x,y) strategy on 3x Vy 9(x,y)

Vl n v1
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A (compact closed) category of arenas

Constructions on arenas.
o If Ais an arena, A' has the same structure with polarity inverted.

o If A, B are arenas, A || B has events |A| + |B|, and components inherited.

Definition
A strategy from A to B is o : AL || B, written o : A—=B. J

V1 V4 4 d4 s
EA A
‘V3 EI3

5

Composition 7 ® o : A—=C is defined for all 0 : A—=B,7: B—+C.
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What is the result of the composition of the strategies o and 77

o J1 T V1 V4
i 'Y
“17 J2
Vo ‘v
¥ 7
3 \BES
31 34 31 34
1 V2 o - >
33 33

Interaction (a meet):

V1 Va 4

% i

1 ¥

‘v ® | V2 —

b \\\\\\\\\£§3 {j; \\2§34

5
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What is the result of the composition of the strategies o and 77

o J1 T V1 V4
i 'Y
“17 J2
Vo ‘v
¥ 7
3 \BES
31 34 31 34
1 V2 o - >
33 33

Interaction (a meet):

Vi Va =N 1
y

> ¥

‘v ® | V2 —

b \\\\\\\\\£§3 {j; \\2§34

5
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What is the result of the composition of the strategies o and 77

o e T Vi Vs
:v‘ V
“17 J2
Va2 A
¥ 7
3 \BES
31 34 31 34
1 V2 V2 —_— s
33 33

Interaction (a meet):

Vi Ve N e
! 3

b \\\\\\\\\\\ﬁiﬂ {£$; \\>Q J4

5
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What is the result of the composition of the strategies o and 77

o J1 T V1 V4
i 'Y
“17 J2
Vo ‘v
¥ 7
3 \BES
31 34 31 34
1 V2 o - >
33 33

Interaction (a meet):

Vi Va e o
3 4 3

v ®| v -
V\M ai\34

5
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What is the result of the composition of the strategies o and 77

o J1 T V1 V4
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Vo ‘v
¥ 7
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31 34 31 34
1 V2 o - >
33 33
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What is the result of the composition of the strategies o and 77

o J1 T V1 V4
i 'Y
“17 J2
Vo ‘v
¥ 7
3 \BES
31 34 31 34
1 V2 o - >
33 33

Interaction (a meet):
V1 Va4 J;
\AH

; =N
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What is the result of the composition of the strategies o and 77

o J1 T V1 V4
i 'Y
“17 J2
Vo ‘v
¥ 7
3 \BES
31 34 31 34
1 V2 o - >
33 33

Interaction (a meet):
V1 Va4 J;
\AE

; =N
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What is the result of the composition of the strategies o and 77

o e T Vi Vs
:v‘ V
“17 J2
Va2 A
¥ 7
3 \BES
31 34 31 34
1 V2 V2 —_— s
33 33

Composition (projection):

\21 V4 J1

'y

E| 2 : ‘&’

Ly ol v -

— i \34
Js

— A compact closed category CG.



> -strategies on arenas

A strategy, plus free variables (Vbélard’s moves) and terms (Jloise’s moves).

EIEM
S
Vit v

Definition
A X -strategy on A is a strategy o : A, with a labeling function
Ao o] = Tms(|o])
such that:
Va' elo|, As(a) = a

Vaielo|, Ao(a) € Tmg([a]l)

where [a]s = {3’ € |o| | 3’ <o a & pol,(a)) = V}.

11/18



What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vl V4 E|1C
I V s
3" 47
‘v ® Va2
V3 —~
ﬂsf(V3,V4) Hag(v2) 34h

12/18



What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vl V4 E|1C
I V s
3" 47
‘v ® Va2
V3 —~
ﬂsf(V3,V4) Hag(v2) 34h

o1 = C

¥

12/18



What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Va 3¢ ©1
% : 47
3" 9{7 o
v ®| v -
V3 . 2%\
\35)‘(&/3,\74) 33g(\12) 34};(\12) 03 \& b/04
Js
01 = cC

01 02

12/18



What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Va 3¢ ©1
% : 47
e 9{7 o
¥ ®| " - =
V3 . 2%\
\35f(v3,v4) 3,6(¥2) 3,h(vV2) 03 \& b/o,;
Js
op = ¢
01 = 09

o3 = g(o2)

12/18



What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Vs

‘v
ENE

.v3

T~a

o1

01

o3
Oq

¥

12/18



What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Va 3¢ ©1
Y : 47
e 9{7 o
N ® T -
V3 . 2%\
\35f(v3,v4) 33g(‘12) 34h(vz) 03 \& b/o,;
Is
01 = cC
o1 = 05
o3 = g(o)
O4 = h(Og)

f(os,04) = Is

12/18



What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Va 3¢ ©1
v : $
I 9{7 oy
¥ ®| v -
% | ¥ N
\35"(\73’\’4) 335’(\12) 34h(\7’2) 03 \& b/o4
Js
01 = cC
o1 = (2}
O3 = g(OZ)
O4 = h(Og)

f(oz,04) = s
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What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Vs Ellc
v :
e !
vy ® V2 _
\7/3 \A :
357 (Y3:0) 358(V2) 3,h(v2) 03
O1 = c
01 = o
o3 = g(o) with m.g.u.
o = h(o2)

f(oz,04) = s

12/18



What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi V4 e o1
v .47 i‘g
e b 02
¥ ®| =
T 7,8(V2) 3, h(V2) 03 O4
ﬂsf(V3,V4) 3 4 \& b/
Js
O1 = C o1 —> Cc
01 = Op
o3 = g(og) with m.g.u.
O4 = h(Oz)

f(oz,04) = s

12/18



What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Vs Ellc
e :
3" ‘{7
f ® Va2 _
\7/3 \A :
357 (V3:¥4) 358(V2) 3,h(v2) 03
O1 = c o .
o1 = 0o o .
o3 = g(o) with m.g.u.
o = h(o2)

f(oz,04) = s

¥
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What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Vs Ellc

v :

RS J

f ® V2 _

\7/3 \A :

357 (V3:¥4) 358(V2) 3,h(v2) 03

O1 = c o .
o1 = 0o o .
o3 = g(o2) with m.g.u. 03 -
o = h(o2)

f(oz,04) = s

¥
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What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Vs Ellc
v :
B! QL
\7/3\ :

357 (V3:¥4) 358(V2) 3,h(v2) 03

O1 = c o .

01 = o oo

o3 = g(o2) with m.g.u. 03 o

o = h(o2) b

f(oz,04) = s
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What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Vs Ellc

v :
B! ‘L

RE \A :

357 (V3:¥4) 358(V2) 3,h(v2) 03

O1 = c o .

o1 = 0o o .

o3 = g(o2) with m.g.u. 03 o

04 = h(op) o N

s

f(03704) = 35 35

¥

N
Js
C
C
g(c)
h(c)
f(g(c), h(c))

12/18
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What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Vs
v
B!
N
\

o1
01
o3
Oq

f(0s,04)

ﬂsf(V3,V4)

02

g(o2)
h(o2)

with m.g.u.

o1
02
o3
Oq

Js

Olc

.02

038() 0,1

11111

5 () h(c))



What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vi Vs

v

EPNE

N

V3

\A

o1
01
03
Oq

f(03,04)

g(o2)
h(o2)

with m.g.u.

o1
02
o3
Oq

Js

11111

5 (6() h(c)
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What is the result of the composition of the ¥-strategies ¢ and 77

Same causal structure, with terms.

Vl V4 Ellc
v ;
3" VL
‘v 0} Va2
V3 -
35“\,3,“) 335’(\12) 34’7(\7’2)

o1 = [
01 = Op
03 = g(on) with m.g.u.
Og4 = h(Og)
f(oz,04) = s

— A new compact closed category ¥-CG.

o1
02
03
Og4

ds

11111

35 (6(0),h(@))

12/18
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Example of winning conditions

Consider the X-strategy o : [3x Vy —=D(x) v D(y)] over DF

¥ W ... 3,
I
viro v V1 Vn

Validity in expansion trees:
= (=D(c) v D(V1)) v (=D(V1) v D(V2))



Example of winning conditions

Consider the X-strategy o : [3x Vy —=D(x) v D(y)] over DF

¥ W ... 3,
v Y
viro v V1 Vn

Validity in expansion trees:
= (=D(c) v D(V1)) v (=D(V1) v D(V2))

Can be decomposed into

E (=D(E1) v D(V1)) v (=D(E2) v D(V2) [J1+ cd2 — V1]

13/18
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Example of winning conditions

Consider the X-strategy o : [3x Vy —=D(x) v D(y)] over DF

¥ W ... 3,
I
viro v V1 Vn

Validity in expansion trees:
= (=D(c) v D(V1)) v (=D(V1) v D(V2))

Can be decomposed into
E (=D(E1) v D(V1)) v (=D(E2) v D(V2) [J1+ cd2 — V1]

Winning conditions, Wpe(|o|) Labelling, As
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:
Wa : (x € C(A)) — QFs(x)

where QFx(x) is the set of quantifier-free formulas on signature X and free
variables in x, extended with countable conjunctions and disjunctions.

Definition. ¢ is a winning on x if = Wa(x)[As]. J

To each configuration of [3x Yy —D(x) v D(y)], we associate a formula:

= ED

V1 Va2
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:
Wa : (x € C(A)) — QFs(x)

where QFx(x) is the set of quantifier-free formulas on signature X and free
variables in x, extended with countable conjunctions and disjunctions.

Definition. ¢ is a winning on x if = Wa(x)[As]. J

To each configuration of [3x Yy —D(x) v D(y)], we associate a formula:
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:
Wa : (x € C(A)) — QFs(x)

where QFx(x) is the set of quantifier-free formulas on signature X and free
variables in x, extended with countable conjunctions and disjunctions.

Definition. ¢ is a winning on x if = Wa(x)[As]. J

To each configuration of [3x Yy —D(x) v D(y)], we associate a formula:

d1
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:
Wa : (x € C(A)) — QFs(x)

where QFx(x) is the set of quantifier-free formulas on signature X and free
variables in x, extended with countable conjunctions and disjunctions.

Definition. ¢ is a winning on x if = Wa(x)[As]. J

To each configuration of [3x Yy —D(x) v D(y)], we associate a formula:

d1
— =D(3) v D(V1)

V1
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:
Wa : (x € C(A)) — QFs(x)

where QFx(x) is the set of quantifier-free formulas on signature X and free
variables in x, extended with countable conjunctions and disjunctions.

Definition. ¢ is a winning on x if = Wa(x)[As]. J

To each configuration of [3x Yy —D(x) v D(y)], we associate a formula:

3 E|
' 2 — (—‘D(Ell) \ D(Vl)) v T

V1
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:
Wa : (x € C(A)) — QFs(x)

where QFx(x) is the set of quantifier-free formulas on signature X and free
variables in x, extended with countable conjunctions and disjunctions.

Definition. ¢ is a winning on x if = Wa(x)[As]. J

To each configuration of [3x Yy —D(x) v D(y)], we associate a formula:

J1 o
— (=D(31) v D(V1)) v (=D(32) v D(V2))

V1 Va2
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:
Wa : (x € C(A)) — QFs(x)

where QFx(x) is the set of quantifier-free formulas on signature X and free
variables in x, extended with countable conjunctions and disjunctions.

Definition. ¢ is a winning on x if = Wa(x)[As]. J

To each configuration of [3x Yy —D(x) v D(y)], we associate a formula:

J1 o
— (=D(F1) v D(V1)) v (=D(F)v D(V2)) v

V1 Va2
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Winning conditions on arenas
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A game A is an arena A, together with winning conditions:
Wa : (x € C(A)) — QFs(x)

where QFx(x) is the set of quantifier-free formulas on signature X and free
variables in x, extended with countable conjunctions and disjunctions.

Definition. ¢ is a winning on x if = Wa(x)[As]. J

To each configuration of [3x Yy —D(x) v D(y)], we associate a formula:

J1 o
— (=D(F1) v D(V1)) v (=D(F)v D(V2)) v

V1 Va2
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Winning conditions on arenas

Definition
A game A is an arena A, together with winning conditions:
Wa : (x € C(A)) — QFs(x)

where QFx(x) is the set of quantifier-free formulas on signature ¥ and free
variables in x, extended with countable conjunctions and disjunctions.

Definition
A Y-strategy o : A is winning on W4 iff for all x € C* (o) 3-maximal,

= Wa(x)[A]

— Two new constructors on games: ® (conjunction) and % (disjunction)

— Winning strategies o : A % B are stable under composition
(*-autonomous category).
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Roadmap

© Interpretation



16/18
The interpretation in a nutshell

Propositional connectives (MLL x-autonomous model)

Quantifiers

[Fxelv = Felelver [Vxolv = Y lelvepg

— A model for proofs of first order MLL



The interpretation in a nutshell
Propositional connectives (MLL x-autonomous model)

Quantifiers and exponentials
[3xelv = 7 I [elveix Vxelv = Vi lelveis

?A=ncuA
Waa(|li xi) \/WA xi)

— A model for proofs of first order MLL

16/18
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The interpretation in a nutshell

Propositional connectives (MLL x-autonomous model)

Quantifiers and exponentials

[3xelv = 7 3. [elveix Ivxely =1 V. [elve g
? A = HnEwA ' A = HnEwA
Wra(lli i) \/WA X;) Wia(lli %) /\WA (x:)

— A model for proofs of first order MLL



The interpretation in a nutshell

Propositional connectives (MLL x-autonomous model)

Quantifiers and exponentials

[Fxelv =7 I felvex [Vxelv = ! Va[@lvex
TA= HnEwA 1A= HnEwA
Wra(lli i) \/WA X;) Wia(lli %) /\WA (x:)

Contraction : for any formula ¢, ¢,y @ [e] —=[¢] ® [¥]

— A model for proofs of first order MLL + contraction (= first order LK)

16/18
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Herbrand's theorem

Herbrand'’s theorem (Compositional Herbrand's theorem)
o [g]. J

A 1° order formula o is valid iff there is a winning ¥ -strategy:

[7] : [Bx vy =D(x) v D(y)] =

¥ 33 . 3,
3 7Y
Vit vy V1 Va

On cut free proofs ~ Expansion trees with explicit acyclicity witness
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Conclusion

Herbrand’s theorem (Compositional Herbrand's theorem)
A 1°" order formula o is valid iff there is a winning ¥ -strategy: o : [¢]. J

Gamess: a concurrent game model with terms and winnings

Proof:
a framework to interpret first order proofs (with extra constructors V,3,!,?

— Does not preserve cuts elimination in LK (by necessity)

— Reflects some dynamics of LK: infinite strategies.

Future investigation: a finatary composition of strategies?
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Herbrand’s theorem, and Herbrand proofs

Herbrand's theorem (Buss?)

A formula ¢ is valid if and only if it has a Herbrand proof, i.e. if it has a valid
substitution of a prenexification of a v-expansion.

Prop. TAUTOLOGY

= —=D(c) v D(y), =D(y) v D(z))
= —D(c) v D(y),3xVy, —=D(x) v D(y)
b 3xVy —D(x) v D(y),3xVy —=D(x) v D(y)
= 3xVy —D(x) v D(y)

3,x:=cVY

x=y,V
CONTRACTION

© v-expansion.

(Ix1Vy1 =D(x1) v D(y2)) v (Ix2Vy2 —D(x2) v D(y2))
© Prenexification.

Ix1Vy13x2Vy2 (=D(x1) v D(y1)) v (=D(x2) v D(y2))
@ Substitution {x; := ¢, x> := y1}

F(=D(c) v D(y1)) v (=D(y1)v D(y2))
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Herbrand’s theorem, and Herbrand proofs

Herbrand's theorem (Buss?)

A formula ¢ is valid if and only if it has a Herbrand proof, i.e. if it has a valid
substitution of a prenexification of a v-expansion.

Prop. TAUTOLOGY

F —D(c) v D(y), =D(y) v D(z))
= —D(c) v D(y),3xVy, —=D(x) v D(y)
b 3xVy —D(x) v D(y),3xVy —=D(x) v D(y)
= 3xVy —D(x) v D(y)

3,x:=cVY

d,x=y,VY

CONTRACTION

© v-expansion.

(Ix1Vy1 =D(x1) v D(y2)) v (Ix2Vy2 —D(x2) v D(y2))
© Prenexification.

Ix1Vy13x2Vy2 (=D(x1) v D(y1)) v (=D(x2) v D(y2))
@ Substitution {x; := ¢, x> := y1}

F(=D(c) v D(y1)) v (=D(y1)v D(y2))

But can we have a more intrinsic/geometric representation of Herbrand proofs?
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Composition of plain strategies
Interaction. An elementary event structure is a partial order (|q|, <q) such
that for any e € |q|, [e]q is finite.

Proposition
For q,q’, we say that
a<dq <= |9/ <Sq']|&C"(a) =C”(d)

Then any two q, q' have a greatest lower bound (meet-semilattice).

For o : At || B and 7: Bt || C, define (ignoring polarities)

T@c=(a|C)n(A]T)

Composition. Define
TOQo = T®clAC : A—+C

This is composition in Rideau and Winskel's concurrent games, simplified.



Interpreting VI

In a linear setting for now.

Vw{x}
[ r,
VI ——— i x¢V,x¢tv(lh)
oML vxop

g [[r]]\)w{x} 2 [[SD:HV@(X}
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Interpreting VI

In a linear setting for now.

Vw{x}
= r,
VI viw x¢V,x¢tv(lh)
oML vxop

[ [[r]]v YXVX [[Saﬂ\hy(x}

All 3* moves where x € fv(t) are set to depend on V.
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Interpreting VI

In a linear setting for now.

Vw{x}
= r,
VI viw x¢V,x¢tv(lh)
oML vxop

o: v 2 Vx. [[SDH\)@(X}

All 3* moves where x € fv(t) are set to depend on V.

The variable x is replaced by V in A,.
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Interpreting I

v
= F, t
I viww te Tmz(V)
FoNLdxop

Composition with the winning X-strategy

wae s Alt/x] V2 3xA

playing 3%, then copycat on A.
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Interpreting the proof of the drinker's formula

= =D(c), D(y), ~D(y), Yy D(y)
=" =D(c), D(y), D(y) = ¥yD(y) -D(c): D . =D )
Fy — 570 D). D6 = VD)) (=D(c): D(y) () - VyD(y))

D(c), ¥yD(y), 3x(D(x) = YyD(y)) Vs
- D(C) = VyD(y),3x(D(x) = VyD(y))
F 3x(D(x) = YyD(y)), 3x(D(x) = VyD(y))
 3x(D(x) = VyD(y))
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Interpreting the proof of the drinker's formula

F —D(c), D(y), ~D(y), VyD(y)
() D(y), D(y) = VyD(y) —-D(c): D . (D =VvD
|_y ﬁD(C) 55) D03 = VD ]) (=D(¢)> D(y) - (D(y) =¥yD(y)))
D(c), ¥yD(y), 3x(D(x) = YyD(y)) Vs
F D(C) = VyD(y), 3x(D(x) = VyD(y))
F 3x(D(x) = VyD(y)), 3x(D(x) = VyD(y))
= 3x(D(x) = VyD(y))

y
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Interpreting the proof of the drinker's formula

" =D(c), D(y), ~D(y), ¥yD(y)
)

F —D(c), D(v), D(y) = VyD(y) (=D(c)- D(y) -3x(D(x) =VyD(y)))
=" =D(c), D(y), 3x(D(x) = ¥yD(y))
D(c),VyD(y), 3x(D(x) = ¥yD(y)) E}

),
F D( ) = VyD(y), 3x(D(x) = VyD(y))
F 3x(D(x) = VyD(y)), 3x(D(x) = VyD(y)) V2
 3x(D(x) = VyD(y))
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Interpreting the proof of the drinker's formula

F" —~D(c), D(y), ~D(y), VyD(y)

+ =D(c), D(y), D(y) = VyD(y) —D(e) » ¥yD(y) > Ix(D(x) = VyD(y))
" =D(c), D(y), 3x(D(x) = ¥yD(y))
—D(c),¥yD(y), 3x(D(x) = VyD(y)) Yy — 35
F D(c) = VyD(y), 3x(D(x) = VyD(y))
= 3Ix(D(x) = YyD(y)),3x(D(x) = YyD(y)) Yo

= 3x(D(x) = VyD(y))



23/18

Interpreting the proof of the drinker's formula

' —-D C) (Y), (y :SVyD ) D(c) = VyD(y) » 3x(D(x) = VyD(y))
l—y —D(¢), D(y), 3x(D(x) = VyD(y))
D(c),YyD(y), 3x(D(x) = VyD(y)) vy 35

= D(c) = VyD(y),3x(D(x) = VyD(y
= 3x(D(x) = YyD(y)),3x(D(x) = Vy
 3x(D(x) = VyD(y))

Q<|s

y)) Vo




= ﬂx(D(x) = VyD( )

Interpreting the proof of the drinker's formula

Ix(D(x

)= VyD(y)) -
EME

V1

Ix(D(x) = VyD(y))

V2
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Interpreting the proof of the drinker's formula

F" —~D(c), D(y), ~D(y), VyD(y)
)

= =D( ) D(y), D(y) = ¥yD(y) Ix(D(x) = YyD(y))
M =D(¢), D(y),3x(D(x) = VyD(y))
D(c),VyD(y),3x(D(x) = ¥yD(y)) I B
F D(c) = VyD(y), 3x(D(x) = ¥yD(y)) b b
I 3x(D(x) = ¥yD(y)), 3x(D(x) = ¥yD(y)) yo vy

- 3x(D(x) = YyD(y))
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Composition of winning strategies

Constructions. If A is a game, At has
War(x) = Wa(x)*

If A and B are games with winnings, we define two games with arena A || B:

Wags(xa || xs) Wa(xa) A Wg(xg)
Wazp(xa || x8) = Wa(xa) v Wa(xs)

with units 1 = (&, Wi (&) = T) L =(, W, (D) =1)

Winning strategies from A to 53 are winning X-strategies
c: A 3B

Lemma: ®, %, +, ® preserve winning.

Proposition

There is a x-autonomous category Gamess with games as objects, and
winning ¥-strategies as morphisms.




	Herbrand's theorem, an overview
	When games come into play
	A base model of concurrent games to compose acyclicity witnesses
	Labelled strategies to compose term witnesses
	Games with winning to discriminate strategies

	Interpretation

